
D.3.2.b Formal Veri�cation of Properties

D.3.2.c Error Interpreter

Abstract

This report presents the work done for the instantiation of Formose method-
ology into the Atelier B. It gives the syntax of events accepted in Formose
B Components and de�nes the meaning of re�nements in terms of substi-
tutions. Moreover, it provides implementation aspects of the con�guration
of the Proof Obligation Generator of the Atelier B to generate the Proof
Obligations of the Formose methodology and explores the proof activity and
the feedback of the results of this activity to the Formod tool.

Revision Table

Version Date Contributors Contribution
1.0 11/10/2019 H. Ruiz Barradas (Clearsy) Initial version

Contents

1 Introduction 3

2 Formal veri�cation of properties 4
2.1 Syntax . 4
2.2 Semantics and Proof Obligations 8

2.2.1 The Main Goal . 8
2.2.2 Data Re�nement . 10
2.2.3 AND Re�nement . 11
2.2.4 OR Re�nement . 13
2.2.5 MILESTONE Re�nement 14

3 Implementing Formose Proof Obligations 17
3.1 Adaptations of the Atelier B 17
3.2 Parametrization of the Proof Generator 18
3.3 Adaptations to Formod Tool 22

3.3.1 Goal and Domain Diagrams 22
3.3.2 Proof Activity and Feedback to Formod 24

4 Conclusions 29

A Proof of Theorem 1 31

B Proof of Derivation 2.1 34

2

Chapter 1

Introduction

A system speci�cation in the Formose methodology is developed by stepwise
re�nements. At each re�nement step the system speci�cation is described
by a Goal and Domain diagrams through the Formod tool using the require-
ments modeling language propose by Formose. In order to formally verify
the speci�cation process, these diagrams are automatically translated into B
templates and then they are manually completed to produce B components
adapted for the Formose methodology. These B components are syntactically
veri�ed and proved by the Atelier B tool.

In this report, we present the theoretical and practical aspects of the
instantiation of the Goal and Domain models into the B methodology. In
particular, a rigorous de�nition of the syntax and semantics of the Formose
B components is given as well as practical aspects of this instantiation in the
Atelier B tool.

This report is structured in two chapters. The �rst chapter presents the
syntax and semantics of the Formose B components. The syntax restricts to
select substitution to be used as the body of events and expands the type
of re�nements supported for the events, whereas the semantics de�nes the
Formose re�nements through weakest preconditions or substitutions. These
de�nitions, founded in the style of [1], are proved to be conform to original
development in [3] inspired from [2]. The second chapter gives the practical
aspects of the work made in the Atelier B. It explains the setup of resources
to be set in the Atelier B to process Formose B components and shows
how the Proof Obligations Generator is parametrized to generate the Proof
Obligations de�ned in the Formose methodology. The chapter terminates
with an exploration of the proof activity in the Atelier B and how the result of
this proof activity can be feedback to the Formod tool. The report terminates
with a conclusion of the work done.

3

Chapter 2

Formal veri�cation of properties

Formal veri�cation of properties in Formose is made by the formal proof of
re�nements. These properties can be explicitly expressed by logical formulas
in the Domain Diagrams and then translated into invariants in the B com-
ponents. Other properties can be implicitly stated by the type of re�nement,
stating that a goal must be established by the establishment of its subgoals
in any particular order, or by the establishment of only one of its subgoal or
by the establishment of the subgoals in a particular order.

In order to formally prove these properties, a formal semantics must be
given to the requirement modeling language used to describe the Goal and
Domain diagrams. The semantics of that language is formalized through the
mapping into the Generalized Substitution Language of the B Method having
an axiomatic semantics de�ned by weakest preconditions or substitutions. In
this paragraph the syntax and semantics of the B components adapted for
the Formose methodology are explained and the Proof Obligations to validate
these components are discussed.

2.1 Syntax

B components in the Formose methodology have the same clauses that com-
ponents in the Event B method, except the VARIANT clause which is not
allowed in Formose. The di�erence among components in Formose and Event
B is in the content of the EVENTS clause.

Events in the EVENTS clause for Formose are in bijection with the goals
of a Goal diagram at certain abstraction level. The syntax of the body of
these events is given by the following de�nition:

4

Chapter 2
Formal veri�cation of properties

De�nition 1 (Formose Event B Body)

The body of events is constrained to select substitutions:

SELECT

Guard
THEN

Substitution
END

where Guard is a predicate over the state of the component
and Substitution can be a simple substitution:

x := E

or a �becomes such that� substitution:

x : (Post(x))

where Post(x) is a predicate stating the properties of x hold-
ing after execution of the substitution.

Two things are to be noted about the Substitution in the body of the
select substitution in De�nition 1:

1. x can be a list of distinct variables, and in this case, E a list of expres-
sions.

2. A simple substitution x := E can always be rewritten as a �becomes
such that� substitution x : (x = E).

At the highest abstraction level, the EVENTS clause of the component
containing the main goal of the system speci�cation contains the event de-
noting the main goal of a system speci�cation. Therefore this clause must
be de�ned as follows:

De�nition 2 (EVENTS Clause for Main Goal)

The EVENTS clause must contain only one event:

EVENTS

event_name = event_body

where event_name corresponds to the name of the main

5

Chapter 2
Formal veri�cation of properties

goal and event_body is a select substitution according to
De�nition 1.

According to the Formose methodology, any goal can be re�ned by four
kinds of re�nements: AND, OR, MILESTONE or data. In order to support
these kind of re�nements the ref keyword has been extended.

As a reminder, in Event B, an event e can be split in a re�nement by a set
of events e1, e2, . . . en or a similar set of events can be merged by a re�nement
into a single event. Syntactically, the split or merge of events in a re�nement
is managed by the keyword ref as follows:

Split: Event e is split by the set of events e_1, e_2, . . . e_n:

e_1 ref e = b_1 ;

e_2 ref e = b_2 ;

. . .
e_n ref e = b_n

Merge: The set of events e_1, e_2, . . . e_n is merged into event e:

e ref e_1, e_2, . . . e_n = b

where e and each e_i are names of events and b and each b_i are the body
of events coded by select substitutions according to De�nition 1.

In the Formose methodology the merge or split of events is not de�ned
and the ref keyword is used to denote only a data re�nement according to
the following de�nition:

De�nition 3 (Data Re�nement Syntax)

Data re�nement of an abstract event e_a by a re�ned event
e_c is denoted by the following notation:

e_a ref e_c = event_body

where event_body is a select substitution according to Def-
inition 1.

AND, OR or MILESTONE re�nements are speci�ed by an extension of
the ref keyword as stated by the following de�nitions:

6

Chapter 2
Formal veri�cation of properties

De�nition 4 (AND Re�nement Syntax)

AND re�nement of an abstract event e_a by a set of concrete
events e_c_1, e_c_2, . . . e_c_n is denoted by the following
notation:

e_c_1 ref_and e_a = b_1 ;

e_c_2 ref_and e_a = b_2 ;

. . .
e_c_n ref_and e_a = b_n

where each b_i is a select substitution according to De�-
nition 1 not having common updated variables and the order
of the re�ned events does not matter.

De�nition 5 (OR Re�nement Syntax)

OR re�nement of an abstract event e_a by a set of concrete
events e_c_1, e_c_2, . . . e_c_n is denoted by the following
notation:

e_c_1 ref_or e_a = b_1 ;

e_c_2 ref_or e_a = b_2 ;

. . .
e_c_n ref_or e_a = b_n

where each b_i is a select substitution according to De�-
nition 1 and the order of the re�ned events does not matter.

De�nition 6 (MILESTONE Re�nement Syntax)

MILESTONE re�nement of an abstract event e_a by a se-
quence of concrete events e_c_1, e_c_2, . . . e_c_n is denoted
by the following notation:

e_c_1 ref_milestone e_a = b_1 ;

e_c_2 ref_milestone e_a = b_2 ;

. . .
e_c_n ref_milestone e_a = b_n

where each b_i is a select substitution according to De�-
nition 1. In this case the order of the re�ned events speci�es
the execution order of the concrete events.

7

Chapter 2
Formal veri�cation of properties

In the next section we discuss the meaning of these re�nements in the
context of a Formose B component.

2.2 Semantics and Proof Obligations

In Event B, the computational model attached to any component is repre-
sented by a loop of guarded commands. Only one command is executed at
any time if the condition stated in its guard holds. If the guards of two or
more guarded commands hold at any iteration of the loop, only one of these
commands is chosen for execution in a non deterministic way. Formose B
components do not have attached such a computational model.

In the following sections the meaning of events in Formose B components
is described and the proof obligations needed to validate these components
are stated.

2.2.1 The Main Goal

As state by De�nition 2, there is only one event at the top level of a Formose
speci�cation. The computational model associated at this top level can be
seen as a guarded command executed under the condition of its guard. In
this way, the meaning of the event associated to the main goal is given by
the following de�nition:

De�nition 7 (Main Goal Semantics)

Let e be the event denoted by event_name in De�nition 2.
Let x be the list of variables declared in the Formose B com-
ponent containing e, I be the invariant to be preserved by e
and C be the properties of the constants declared in the com-
ponent. Under this context, the meaning of e is the update
of x by the execution of Substitution preserving I under the
assumption I ∧ C ∧ Condition, that is:

I ∧ C ∧ Condition ⇒ [Substitution]I

As noted in Section 2.1, Substitution can always be written as a �becomes
such that� substitution x : (Post(x)). Therefore, the Proof Obligation to
be proved to validate the Formose B component containing the main goal is
stated as follows:

8

Chapter 2
Formal veri�cation of properties

Proof Obligation 1 (Main Goal)

According to De�nition 7 and Substitution being x : (Post(x)),
the Proof Obligation to be satis�ed by the component contain-
ing the main goal is:

∀x′ · (I ∧ C ∧ Condition ∧ Post(x′)⇒ [x := x′]I)

where x′ \ (I, C,Guard Post(x)), Post(x′) = [x := x′]Post(x)
and Post(x) is the predicate satisfying the �becomes such
that� substitution de�ning the body Substitution.

The event denoting the main goal, or any other event at lower abstraction
level, must be proved to be feasible. It allows to ensure the existence of a
state reached by the execution of that event when its guard is enabled. The
semantics of this requirement is given as follows:

De�nition 8 (Feasibility)

Let e by an event in a Formose B Component having invari-
ant I and properties C. The feasibility of e is stated by the
following predicate:

I ∧ C ∧ grd(e)⇒ ¬[e]false

where grd(e) for any event e satisfying De�nition 1, is the
condition Guard in its select substitution.

Given e satisfying De�nition 1, the Proof Obligation to be satis�ed by a
feasible event is:

Proof Obligation 2 (feasibility)

Let e by the event

select Guard then x : (Post(x)) end

in the context of De�nition 8. In order to be feasible, the
Proof Obligation to be satis�ed by e is:

I ∧ C ∧ Guard ⇒ ∃x′ · (Post(x′))

The event denoting the main goal, or any other event at lower abstrac-
tion level can be re�ned in four di�erent ways as described in the previous

9

Chapter 2
Formal veri�cation of properties

section. These re�nements are de�ned in the following paragraphs and its
corresponding proof obligations are stated.

2.2.2 Data Re�nement

Data re�nement is the only one re�nement having a semantics taken from
Event B. In this kind of re�nement an abstract variable is re�ned by a con-
crete one and the relation between them is stated by a �gluing� invariant.
Then, the meaning of a data re�nement of an abstract event by a concrete
one is de�ned by a predicate stating that the execution of the concrete event
under the context of the abstract and gluing invariant must establish a post-
condition indicating that the abstract event is not able to establish the nega-
tion of the gluing invariant. This is formalized by the following de�nition:

De�nition 9 (Data Re�nement)

Let M be a Formose B component with variables x, invariant
I and properties C; let a be an event fromM . Moreover, letN
be another Formose B component with variables y, properties
D and gluing invariant J relating variables y to x. Under this
context, the meaning of a data re�nement of an event a by an
event c is stated as follows:

C ∧ I ∧ D ∧ J ⇒ [c]¬[a]¬J

Taking into account the form of events according to De�nition 1 and
the fact that substitutions in the body of a select can be rewritten as a
�becomes such that� substitution, the Proof Obligation required to validate
a data re�nement is stated as follows:

Proof Obligation 3 (Data Re�nement)

Under the context of De�nition 3, let a and c be the following
events:

a = select Guarda(x) then x : (Posta(x)) end

c = select Guardc(y) then y : (Postc(y)) end

The proof obligation to be satis�ed by the data re�nement of

10

Chapter 2
Formal veri�cation of properties

a by c is the following:

∀y′ · (C ∧ I ∧ D ∧ J ∧ Guard c ∧ Post c(y
′)⇒

Guarda ∧ ∃x′ · (Posta(x′) ∧ [y := y′][x := x′]J))

where (x′, y′) are fresh variables not free in the context of
components M and N , Post c(y

′) = [y := y′]Post c(y) and
Posta(x

′) = [x := x′]Posta(x).

Data re�nement semantics in De�nition 9 is stated in terms of substitu-
tions in the style of [1]. This style is well suited to be coded into the Atelier
B tool. However, by substitution calculus, the Proof Obligation 3 are pre-
sented in terms of guards and postconditions in a style similar to [2]. In this
way we can distinguish in Proof Obligation 3 the GRD, SIM and INV proof
obligations described in [2]:

GRD
C ∧ I ∧ D ∧ J ∧ Guard c ∧ Post c(y

′)⇒ Guarda

SIM and INV

C ∧ I ∧ D ∧ J ∧ Guard c ∧ Post c(y
′)

⇒ ∃x′ · (Posta(x′) ∧ [y := y′][x := x′]J)

Finally we note that in this case, the predicated to be proved for SIM and
INV contains an existential quanti�er, and therefore a witness for x′ must
be exhibited. In [2] the WFIS rule asks for proof this witness explicitly. It
allows to split SIM and INV Proof Obligation.

2.2.3 AND Re�nement

The AND Re�nement in Formose methodology is de�ned as the satisfaction
of a parent goal by the conjunction of its subgoals [3]. These subgoals can
be executed in any order, therefore in order to avoid dependences among the
accesses to the variables manipulated by the subgoals, it is imposed that the
set of manipulated variables in a subgoal must be disjoint with respect to
the set of manipulated variables of any other subgoal.

Before giving the semantics of the AND Re�nement in terms of substi-
tutions, we present a theorem indicating that the parallel execution of two
substitution having no common variables is equal to the sequential execution
of the substitution in a non deterministic way. This is formalized as follows:

11

Chapter 2
Formal veri�cation of properties

Theorem 1 (Parallel Execution)

Let G1 and G2 be two substitution de�ned as follows:

G1 = select Guard1(x) then x : (Post1(x)) end

G2 = select Guard2(y) then y : (Post2(y)) end

and y \ (Guard1(x), Post1(x)) and x \ (Guard2(y), Post2(y)).
The result of the parallel execution of G1 and G2 is the same that

their sequential execution in a non deterministic way:

G1 ‖ G2 = ((G1 ; G2) [] (G2 ; G1))

The proof of this theorem is given in appendix A. A generalization of
this theorem can be used to argue that the result of any execution sequence
of events e1, e2, . . . en, where vars(ei) \ vars(ej), i 6= j, {i, j} ⊆ 1..n and
vars(e) denoting the list of variables accessed by e, is equal to the parallel
execution of these events. In this way we can state the semantics of an AND
Re�nement as follows:

De�nition 10 (AND Re�nement)

Let e be any event and vars(e) be the list of variables ac-
cessed by e. Let M be a Formose B component with vari-
ables x, invariant I and properties C; let a be an event from
M . Moreover, let N be another Formose B component with
variables z, properties D and gluing invariant J relating vari-
ables z to x. Let E be a set of events {c1, c2, . . . cn} from N ,
where vars(ci) \ vars(cj) for any distinct indexes i and j in
the interval 1..n. Under this context, the meaning of an AND
Re�nement of an event a by the set of events E is stated as
follows:

C ∧ I ∧ D ∧ J ⇒ [c1 ‖ c2 ‖ . . . cn]¬[a]¬J

Using the form of events in De�nition 1 and the generalization of A.1 in
appendix A to n events in Theorem 1, we state the Proof Obligations for the
AND Re�nement as follows:

Proof Obligation 4 (AND Re�nement)

In the context of De�nition 10 let a and ci, for i ∈ 1..n, be

12

Chapter 2
Formal veri�cation of properties

the events

a = select Guarda(x) then x : (Posta(x)) end

ci = select Guardi(yi) then yi : (Posti(yi)) end

Let y be the list of variables y1, y2, . . . yn and y′ be the list of
variables y′1, y

′
2, . . . y

′
n. The Proof Obligation to be satis�ed by

the AND Re�nement of a by the set of events E is:

∀y′ · (∀i · (i ∈ 1..n⇒ C ∧ I ∧ D ∧ J ∧ Guard i(yi) ∧ Post i(y
′
i))

⇒ Guarda ∧ ∃x′ · (Posta(x′) ∧ [y := y′][x := x′]J))

In must be noted that the Proof Obligation 4 is weaker than the Proof
Obligations for AND Re�nement presented in [3].

2.2.4 OR Re�nement

The OR Re�nement in Formose methodology of a parent goal by a set of
mutually exclusive subgoals is de�ned as the achievement of only one subgoal.
This kind of re�nement is formalized with the help of a bounded choice
substitution as follows:

De�nition 11 (OR Re�nement)

Let M be a Formose B component with variables x, invariant
I and properties C; let a be an event fromM . Moreover, letN
be another Formose B component with variables z, properties
D and gluing invariant J relating variables z to x. Let E
be a set of mutually exclusive events {c1, c2, . . . cn} from N
where any distinct events u and v from E satisfy ¬(grd(u) ∧
grd(v)), where grd(e), for any event e satisfying De�nition 1,
is the condition Guard in its select substitution. Under this
context, the meaning of an OR Re�nement of an event a by
the set of events E is stated as follows:

C ∧ I ∧ D ∧ J ⇒ [c1 [] c2 [] . . . cn]¬[a]¬J

Taking the form of events in De�nition 1 and applying the substitution
calculus rules, we get the Proof Obligation for the OR Re�nement:

13

Chapter 2
Formal veri�cation of properties

Proof Obligation 5 (OR Re�nement)

In the context of De�nition 11 let a and ci, for i ∈ 1..n, be
the events

a = select Guarda(x) then x : (Posta(x)) end

ci = select Guardi(yi) then yi : (Posti(yi)) end

The Proof Obligations to be satis�ed by the OR Re�nement
of a by the set of events E are:

∀i.(i ∈ 1..n⇒ ∀y′ · (C ∧ I ∧ D ∧ J ∧ Guard i(yi) ∧ Post i(y
′
i)

⇒ Guarda ∧ ∃x′ · (Posta(x′) ∧ [yi := y′i][x := x′]J))) and

∀j, k.({j, k} ⊆ 1..n ∧ j 6= k ⇒ ¬(Guard j(yj) ∧ Guardk(yk)))

In order to guarantee that only one event in an OR Re�nement can be
executed at any time, Proof Obligation 5 states that any two distinct events
of the re�nement set cj and ck do not have to be enabled at the same time
: ¬(grd(cj) ∧ grd(ck)). We note that this statement is di�erent from [3]
indicating that the exclusivity condition is ¬(Post j(yj) ∧ Guardk(yk)) which
does not provides the exclusivity guarantee because nothing ensures that cj
is not enabled when ck is enabled.

2.2.5 MILESTONE Re�nement

The MILESTONE Re�nement in Formose methodology is de�ned as the
satisfaction of a parent goal by a sequential execution of subgoals introducing
intermediate states to reach a �nal state where the parent goal is ful�lled [3].
As it is needed to reach intermediate states to reach a �nal state, miraculous
events are proscribed. This kind of re�nement is formalized with the help of
sequential substitution as follows:

De�nition 12 (MILESTONE Re�nement)

Let M be a Formose B component with variables x, invariant
I and properties C; let a be an event fromM . Moreover, letN
be another Formose B component with variables z, properties
D and gluing invariant J relating variables z to x. Let E be a
sequence of non miraculous events [c1, c2, . . . cn] from N where
[c1]grd(c2) and [c1 ; . . . ci]grd(ci+1), for i ∈ 2..n − 1, where

14

Chapter 2
Formal veri�cation of properties

grd(e), for any event e satisfying De�nition 1, is the condition
Guard in its select substitution. Under this context, the
meaning of a MILESTONE Re�nement of an event a by the
sequence of events E is stated as follows:

C ∧ I ∧ D ∧ J ⇒ [c1 ; c2 ; . . . cn]¬[a]¬J

As [S ; T]Q ⇔ [S][T]Q, the generalization to the sequence of events E
in De�nition 12 cannot be expressed by universal quanti�cation over the set
of events as it is done in Proof Obligations 4 and 5. Therefore, a recursive
de�nition is given to express the Proof Obligation:

Proof Obligation 6 (MILESTONE Re�nement)

For a list of substitutions l and predicate Q, let wp_seq be
the following function:

wp_seq(l, Q) =

{
[�rst(l)]wp_seq(tail(l), Q) if l 6= []
Q if l = []

In the context of De�nition 12, the Proof Obligation to be
satis�ed by the MILESTONE Re�nement of a by the sequence
of events E are:

C ∧ I ∧ D ∧ J ⇒wp_seq(E,¬[a]¬J) and

C ∧ I ∧ D ∧ J ⇒ ([c1]grd(c2) ∧∀i.(i ∈ 2..n− 1⇒ [c1 ; . . . ci]grd(ci+1)))

where ¬[a]¬J ⇔ Guarda ∧ ∃x′ · (Posta(x′) ∧ [x := x′]J).

Let us suppose an abstract event a and two concrete events c1 and c2
satisfying De�nition 1:

a = select Guarda(x) then x : (Posta(x)) end

c1 = select Guardc1(yc1) then yc1 : (Postc1(yc1)) end

c2 = select Guardc2(yc2) then yc2 : (Postc2(yc2)) end

The application of the �rst part of the Proof Obligation 6, with a sequence
E of two events [c1, c2], milestone re�ned by event a, gives the following

15

Chapter 2
Formal veri�cation of properties

derivation (see proof in appendix B):

∀y′c1 , y
′
c2
· (C ∧ I ∧ D ∧ J ∧ Guard c1 ∧ Post c1(y

′
c1
)

∧ [yc1 := y′c1]Guard c2 ∧ [yc1 := y′c1]Post c2(y
′
c2
)

⇒
Guarda ∧ ∃x′ · (Posta(x′) ∧ [yc1 := y′c1][yc2 := y′c2][x := x′]J))

(2.1)

The application of the Substitution Calculus to the second part of the Proof
Obligation 6 gives as result:

∀y′c1 · (C ∧ I ∧ D ∧ J ∧ Guard c1 ∧ Post c1(y
′
c1
)

⇒ [yc1 := y′c1]Guardc2)
(2.2)

From the Proof Obligation 2.1 and 2.2 we can observe that, under the context
of the re�nement according to De�nition 12, the three proofs obligations given
in [3] must be done to validate the MILESTONE re�nement of a by c1 ; c2:

• Abstract GuardGuarda must be proved from the concrete guardGuard c1 .

• Abstract Postcondition Posta(x
′)must be established by [yc1 := y′c1]Post c2(y

′
c2
)

and

• The Guard of c2, [yc1 := y′c1]Guardc2 , must be established by Post c1(y
′
c1
).

However, the Proof Obligation 6 are weaker than the ones given in [3] and are
su�cient to prove the intended meaning of the MILESTONE Re�nement.

16

Chapter 3

Implementing Formose Proof

Obligations

As explained in the previous chapter, the implementation of the Formose
methodology is supported through two tools: Formod and Atelier B. Formod
tool generates templates of Formose B components which are completed and
validated by the Atelier B tool. In order to support this validation phase
some adaptations were done in the Atelier B tool. This chapter traces these
adaptations and explore the adaptations to be done in the Formod tool to
support the feedback provided by the Atelier B.

3.1 Adaptations of the Atelier B

As the syntax and semantics of events in Formose B components are a variant
of Event-B, the Atelier B projects intended to contain Formose B components
must be declared as Event-B projects. However, in order to support the
extended syntax of ref keyword as given in De�nitions 4, 5 and 6 and the
generation of the corresponding Proof Obligations, the following resources
must be set in the con�guration Files AtelierB:

Resources Atelier B

Atelier B projects containing Formose B Components must
have the following resources in the con�guration �le AtelierB

17

Chapter 3
Implementing Formose Proof Obligations

in the bdp directory of the project:

ATB*ATB*Proof_Obligations_Generator_NG:TRUE

ATB*POG*Generate_EventB_Feasibility_PO:TRUE

ATB*TC*Event_B_Formose:TRUE

ATB*BCOMP*Event_B_Formose:TRUE

As can be noted from the previous resource set, the New Proof Obligation
Generator of the Atelier B is activated. The following section explains how
this generator was updated to generate the Formose Proof Obligations.

3.2 Parametrization of the Proof Generator

The New Proof Obligations Generator uses a parametrization �le to describe
how the Proof Obligations must be generated. This �le describes a set of
rules, or templates, to be applied to the XML representation of the B Com-
ponents in order to generate the corresponding Proof Obligations. The XML
format of B components is named BXML. The outcome of the application
of the parametrization �le to the BXML document is a set of Proof Obliga-
tions coded into the Generalized Substitution Language as XML elements.
The XML format of the generated Proof Obligations is named POXML. The
POXML �le is further processed to discharge obvious proof obligations and
then produce a �le, with extension .po in Theory Language, to be processed
by the provers of the Atelier B.

The standard parametrization �le paramGOPSystem.xsl, used to gener-
ate Proof Obligations in Event-B, was adapted to generate the Formose Proof
Obligations described in section 2.2. The adapted �le paramGOPFormose.xsl,
uses the same rules from Event-B to generate the Proof Obligations for in-
variant preservation, feasibility and data re�nement. The rules for AND, OR
and MILESTONE re�nements were written from scratch.

The root element of a POXML document is described by the following
excerpt in the RELAX NG Compact Syntax [4]:

De�nition 13 (POXML Root Element)

start =
element Proof_Obligations {
element Define {...}+,
element Proof_Obligation {
...
element Definition{ attribute name{text}}+,

18

Chapter 3
Implementing Formose Proof Obligations

element Hypothesis{ Predicate ? },
element Goal{Predicate_or_SubCalculus}

}+
}

According to the excerpt in De�nition 13 a POXML document contains
a list of Define and Proof_Obligation elements embedded in the root el-
ement. The contents of the Define elements are used to factorize global
hypothesis that will be referenced by the Proof Obligations. Each Proof
Obligation has its corresponding Proof_Obligation element. Apart from
de�nitions and management information, this element contains the hypoth-
esis and goal to be proved embedded into its corresponding elements. The
contents of the Hypothesis element is a predicate containing the conjunction
of all hypothesis in the Proof Obligation. The contents of the Goal element
is given by the following de�nition:

De�nition 14 (Predicate or Substitution Calculus)

Predicate_or_SubCalculus = Predicate
| element Sub_Calculus {Substitution,

Predicate_or_SubCalculus}
| element Not { Predicate_or_SubCalculus }

From De�nition 14, the contents of the Goal element can be a predicate,
a Sub_Calculus element or a Not element. Here, it is important to note that
the contents of a Sub_Calculus element is a substitution and another Predi-
cate_or_SubCalculus expression. Therefore, we can use directly De�nitions
10, 11 and 12 to describe the Proof Obligations of the AND, OR and MILE-
STONE re�nements as they are already stated in terms of substitutions and
we do not have to use the Proof Obligations 4, 5 and 6 because they are
calculated by the Proof Obligations Generator.

Then, the role of the parametrization �le is to instruct the XSL processor
to create mainly the list of Proof_Obligation elements from the BXML
contents of the B components by applying the corresponding de�nitions.

The parametrization �le starts by the creation of a map associating for
each abstract event a and its type of re�nement t, the list of re�ned events
[c1, c2, . . . cn]:

De�nition 15 (Re�nement Map)

Let a be an event according to De�nition 1, t an integer in
the interval 0 . . . 3 denoting the type of re�nement applied

19

Chapter 3
Implementing Formose Proof Obligations

to a, and ref_type the function associating to t a type of
re�nement:

ref_type(t) =

{0 7→ ref, 1 7→ ref_and, 2 7→ ref_or, 3 7→ ref_milestone}(t)

The map m(a, t) denotes the list of re�ned events, in the or-
der where they appear in the source code of the Formose B
component, re�ning the abstract event a:

m(a, t) = [c | c ref_type(t) a]

It must be noted that in the case of data re�nement, m(a, 0) denotes a
list of a single element. In the other cases, m(a, t), for t 6= 0, denotes a list
having a size greater than 1.

Using the re�nement map, for each type of re�nement AND, OR or MILE-
STONE, the parametrization �le contains a rule to create a substitution
de�ned as follows:

De�nition 16 (Semantic Substitution)

Let t be an integer in the interval 1 . . . 3 denoting a type of
Formose re�nement and ref_comp(t) be the following func-
tion:

ref_comp(t) = {1 7→‖, 2 7→[], 3 7→;}(t)

The Semantic Substitution of the non empty list of events l
for a re�nement of type t, Semantic_Subs(l, t), is de�ned as
follows:

Semantic_Subs(l, t) = f(�rst(l), tail(l), t)

where

f(S, l, t) ={
f(S ref_comp(t) �rst(l), tail(l), t) if l 6= []
S if l = []

In this way, for example, using De�nition 16, we can verify that

Semantic_Subs([c1, c2, c3], 1) = c1 ‖ c2 ‖ c3

The Semantic Substitution can now be used to de�ne the Proof_Obligation
elements according to the following de�nition:

20

Chapter 3
Implementing Formose Proof Obligations

De�nition 17 (XSL Proof Obligation)

The Proof_Obligation element corresponding to the Proof
Obligation of the re�nement of type t of an abstract event a
by a sequence of concrete events m(a, t) is de�ned as follows:

<Proof_Obligation>

...

<Goal>

<Sub_Calculus>

XML_Semantic_Subs(m(a, t), t)
<Not>

<Sub_Calculus>

XML_a
<Not>

XML_J
</Not>

</Sub_Calculus>

</Not>

</Sub_Calculus>

</Goal>

</Proof_Obligation>

where m(a, t) is the list of concrete events re�ning a according
to De�nition 15 and XML_Semantic_Subs denotes the XML
substitution Semantic_Subs made up from the concatenation
of substitutions in m(a, t) by the ref_comp(t) operator ac-
cording to De�nition 16 and XML_a and XML_J are the
XML abstract event a and gluing invariant J .

From De�nition 17, by instantiation of t to the values 1, 2 or 3, we
can verify that the Proof_Obligation element codes the semantics of the
AND, OR and MILESTONE re�nement involving the Substitution Calculus
as stated in their corresponding De�nitions 10, 11 and 12. We can note that
in fact, the Proof Obligations generated in this way corresponds to the data
re�nement of the abstract event by the composition of the concrete events.

A similar approach was used to generate the Proof Obligations of the
establishment of guards in the MILESTONE re�nement of De�nition 12 as
it involves the Substitution Calculus. However, a simpli�ed form was used
to generate the Proof Obligation related to the proof of the disjunction of
guards in De�nition 11 as only predicates were involved.

21

Chapter 3
Implementing Formose Proof Obligations

3.3 Adaptations to Formod Tool

From the B perspective of the Formod tool, the Goal and Domain models
of the Formose methodology are instantiated into the B methodology. In
order to instantiate these models, an empty B project must be created to
manage the Formose B components issued from the instantiation process.
After instantiation, the B components can be edited either from the Atelier
B or the Formod tools. When the edition of B components is terminated,
the process of type checking, proof obligation generation and proof is made
in the Atelier B tool.

In order to explore the feedback to be passed to the Formod Tool, in the
next sections we develop the �rst steps of an example issued from a Case
Study where we show the instantiation of simple Domain and Goal models
into a B model and how this B model is proved in the Atelier B Tool. Then
we explore how the Formod tool can display the results of activity of proof.

3.3.1 Goal and Domain Diagrams

The Case Study discussed in this section is a controller computing outputs
from the state of its inputs. Therefore, the Main Goal, named Saturn, is
naturally the intended behavior: �compute outputs as the result of the ap-
plication of a control function to the inputs of the controller�.

The �rst step to formalize the Main Goal is the elaboration of a Domain
Diagram in the Formod tool where the �gure 3.1 gives a representation of
that diagram.

Figure 3.1: Domain Diagram corresponding to the Main Goal

The instantiation of the Main Goal and the Domain Diagram in the B
perspective of the Formod Tool gives us two B components. After completion

22

Chapter 3
Implementing Formose Proof Obligations

of the Saturn event, the two components are showed in the �gure 3.2

SYSTEM Ctx0

SETS

T_IN;

T_OUT;

CONSTANTS

i0,

o0,

FB

PROPERTIES

i0:T_IN &

oO:T_OUT &

FB:T_IN �> T_OUT

END

SYSTEM ProjectL0

SEES Ctx0

VARIABLES

in,

out

INVARIANT

in:T_IN &

out:T_OUT

INITIALISATION

in := i0 ||

out := o0 ||

EVENTS

Saturn =

SELECT 0=0

THEN out:(out = FB(in))

END

END

Figure 3.2: B Model associated to the First Level of the Speci�cation

The B model in �gure 3.2 declares two variables in and out and a constant
FB modeling a control function and states, in the postcondition of the Main
Goal that out = FB(in), that is, the intended meaning of the controller.

The idea in the Second Level of speci�cation is the introduction of �re-
mote� and �local� inputs. The remote inputs are grabbed by input sensors
in the application �eld, and then transmitted to controller to its local inputs
to compute the outputs. The Domain Diagram associated to this speci�ca-
tion level is sketched in �gure 3.3. In this diagram two new variables in_l
and in_r are introduced and a �Logical Formula� in = in_l is introduced
to state that abstract variable in is re�ned (that is glued) with the concrete
one in_l.

The Second Level of the speci�cation is completed with the Goal Dia-
grams of �gure 3.4. In this diagram, the Main Goal Saturn is AND Re�ned
by subgoals Get and Control . The intended meaning of the subgoal Get is
to copy the remote inputs in_r into the local inputs in_l and the meaning
of the Control subgoal is to compute the outputs by the application of the

23

Chapter 3
Implementing Formose Proof Obligations

Figure 3.3: Domain Diagram of the Second Level of Speci�cation

control function FB to the local inputs in_l.

Figure 3.4: Goal Diagram of the Second Level of Speci�cation

After instantiation of these diagrams to the B methodology and the up-
date of the B Components with the body of the subgoals, we get the B
component depicted in �gure 3.5.

3.3.2 Proof Activity and Feedback to Formod

When the ProjectL1.ref component is successfully type checked we can
generate the Proof Obligations required to validate the re�nement. After the

24

Chapter 3
Implementing Formose Proof Obligations

REFINEMENT ProjectL1

REFINES ProjectL0

SEES Ctx0

ABSTRACT_VARIABLES

in_r,

in_l,

out

INVARIANT

in_r: T_IN &

in_l: T_IN &

out : T_OUT &

in_l= in

EVENTS

Control ref_andSaturn =

SELECT 0 = 0

THEN

out:(out = FB(in_l))

END;

Get ref_andSaturn =

SELECT 0 = 0

THEN

in_l:(in_l= in_r)

END

END

Figure 3.5: B Model associated to the First Level of the Speci�cation

generation, the component is passed through the automatic provers of the
Atelier B. The result of the proof activity can be displayed in the Atelier B
Editor as shown in the �gure 3.6.

In the �gure 3.6 at the left of the window we distinguish two columns. In
the �rst column we have the number of each line in the component and the
second column we have the results of the prove activity. The result of the
proof activity is displayed in selected lines corresponding to the lines involved
in the Proof Obligations. The result of the proof activity is displayed as a
fraction x/y where y denotes the number of Proof Obligations where the for-
mula at the concerned line is involved and x, where x ≤ y, denotes how many
Proof Obligations have been successfully proved. In this way, for example,
we have at line 8 the fraction 1/2 indicating that variable in_l is referenced
by two Proof Obligations and only one of proof was successfully proved; at
line 14, we have the fraction 0/1 indicating that no Proof Obligation con-
cerning the formula in_l = in was proved. When the mouse is over the
fraction 1/2 of line 8, we have at the top left window that Proof Obligations
AND_Refinement_Saturn.2 and AND_Refinement_Saturn.4 are referencing
in_l variable. Moreover, the green color of Proof Obligation number 2 in-
dicates that the Proof Obligation has been proved whereas the red color in
Proof Obligation 4 indicates that it has not been proved. If the mouse is set

25

Chapter 3
Implementing Formose Proof Obligations

Figure 3.6: Atelier B Editor with Unproved Proof Obligations

over the fraction 0/1 in red color of line 15, we could see that the top left win-
dow displays in red color the Proof Obligation AND_Refinement_Saturn.4.

The bottom left window of the Atelier B editor displays the Proof Obli-
gation selected in the top left windows. In �gure 3.6, the Proof Obliga-
tion AND_Refinement_Saturn.4 is selected and then we can inspect why the
Proof Obligation cannot be proved. Without further analysis, the Atelier B
Editor shows by its code of colors the status of the Proof Obligations and
indicates the formula, by its line number, involved in the proof. In partic-
ular, we have at line 15 the proof status 0/1 indicating a non discharged
Proof Obligation involving the gluing invariant in_l = in and at line 21
the status 1/2 indicating that the event Get of the AND Re�nement of the
Main Goal has an unproved Proof Obligation. At this time the Formod tool
has not been feed back with this status, and we propose to add this status
information in the Goal and Domain Diagrams as the sources of this error in
the form of a check box as showed in �gure 3.7.

Figure 3.7: Feed Back of Undischarged Proof Obligations

26

Chapter 3
Implementing Formose Proof Obligations

Analyzing the Proof Obligation in the bottom left window of the Atelier B
Editor in �gure 3.6, we can conclude that we cannot claim that the abstract
variable in re�nes the concrete variable in_l because this last variable is
updated by Get event whereas the abstract variable is not modi�ed. It sug-
gests to change the gluing invariant by in_r = in in the Domain Diagram
and change the AND Re�nement by a MILESTONE Re�nement in the Goal
Diagram. After the update of the B Model, the result of the proof activity
in the Atelier B Editor is showed in �gure 3.8.

Figure 3.8: Atelier B Editor with All Proof Obligations Proved

This positive result of the proof activity in the Atelier B tool can now be
feed back to the Formod tool as illustrated in �gure .

Figure 3.9: Feed Back of Undischarged Proof Obligations

The Atelier B Prover renames systematically the variables in the Proof
Obligation, and this rename does not correspond to any formula in the Do-
main Diagram. For example, let us suppose that we have the AND Re�ne-
ment of �gure 3.4, but we change the gluing invariant of the Domain Diagram

27

Chapter 3
Implementing Formose Proof Obligations

in �gure 3.3 by in_r = in. In this case, the Atelier B Editor will show the
status of the �gure 3.10.

Figure 3.10: Editor with Unproved Proof Obligations in Implicit Invariant

In the Proof Obligation displayed in the bottom left window of the Atelier
B Editor, we have FB(in)=out$2 as the consequent of the Proof Obligation.
In this case, the Atelier B prover has renamed the out variable in the re�ne-
ment to out$2 in order to avoid a clash with the name of the abstract variable
and then it introduces an implicit gluing invariant out = out$2. According
to the Proof Obligation of the AND Re�nement, this gluing invariant must
be preserved by the parallel composition of Control and Get events, but this
is not possible as we have as antecedent of the Proof Obligation the predicate
out$2=FB(in_l$1) and there is no way to prove that in_l$1 is equal to in.
Therefore, we can signal by a negative mark the Goal Diagram of the AND
Re�nement, as we do in �gure 3.7, but we do not have a corresponding gluing
invariant out = out$2 in the Domain Diagram.

28

Chapter 4

Conclusions

In this report we have described the theoretical and practical aspects of the
instantiation of the Formose methodology into Event-B in order to use the
Atelier B tool to prove the coherence of the models. This instantiation has
been done at three levels: syntax, semantics and implementation. Moreover,
we have explored the way to feed back the Formod tool with the proof results
made by the Atelier B.

At the syntactic level, the contents of Formose B components was stated.
It was indicated that the component at the highest abstraction level must
contain only one event and the ref keyword was extended to support the
Formose AND, OR and MILESTONE Re�nements; the original ref keyword
is still used to denote data re�nements. Although the syntax of the events in
the Formosa B component has not been changed with respect to the Event B
event syntax, it was precised that any event in Formose B components must
be speci�ed by a select substitution having simple or �becomes such that�
substitutions in its body.

At the semantic level, the meaning of events in Formose B components
was given in an axiomatic way in terms of substitutions. AND, OR and
MILESTONE Re�nements were de�ned in terms of parallel, bounded choice
and sequential substitution respectively. Moreover, taking into account the
constraints imposed in the syntax of events, it was proved by a theorem that
the semantics of the AND Re�nement, given in terms of parallel substitu-
tions, is equivalent to the non deterministic choice of sequential executions of
these substitutions. Finally, the substitutions de�ning the semantics of the
Formose re�nements were expanded into Proof Obligations, in order to show
the pertinence of these de�nition with respect to the original work in [3].

At the implementation level, it was explained the adjustments made in
the Atelier B to support the instantiation of the Formose methodology. It
was indicated the resources to be set in the Atelier B in order to activate the

29

Chapter
Conclusions

processing of Formose B components. Moreover, it was explained how the
Proof Obligation Generator of the Atelier B was parametrized to generate
the Proof Obligation of the Formose re�nements. Finally it was explored the
feedback of the results of the proof activity into the Formod tool through a
simple example.

30

Appendix A

Proof of Theorem 1

In order to prove Theorem 1 we prove, for any postcondition Q, the following:

[G1 ‖ G2]Q⇔ [((G1 ; G2) [] (G2 ; G1))]Q

The proof shows that both substitutions [((G1 ; G2) [] (G2 ; G1))]Q and
[G1 ‖ G2]Q are equivalent to:

∀x′, y′ · (Guard1(x) ∧ Guard2(y) ∧ Post1(x
′) ∧ Post2(y

′)

⇒ [x := x′][y := y′]Q
(A.1)

31

Chapter A
Proof of Theorem 1

First part of the proof :

[G1 ‖ G2]Q

⇔ { trm(G1) = trm(G2) = true, ‖ property and substitution calculus }

Guard1(x) ∧ Guard2(y)⇒ [x : (Post1(x))||y : (Post2(y))]Q

⇔ { y \ (Guard1(x), Post1(x)) and x \ (Guard2(y), Post2(y)) }

Guard1(x) ∧ Guard2(y)⇒ [x, y : (Post1(x) ∧ Post2(y))]Q

⇔ { [z : (P (z))]R⇔ ∀z′ · (P (z′)⇒ [z := z′]R) }

Guard1(x) ∧ Guard2(y)⇒ ∀x′, y′ · (Post1(x
′) ∧ Post2(y

′)
⇒ [x, y := x′, y′]Q)

⇔ { x \ y and z \ (x, y, x′, y′, Q) }

Guard1(x) ∧ Guard2(y)⇒ ∀x′, y′ · (Post1(x
′) ∧ Post2(y

′)
⇒ [z := y′][x := x′][y := z]Q)

⇔ { x \ y′, z \ x′, z \Q }

Guard1(x) ∧ Guard2(y)⇒ ∀x′, y′ · (Post1(x
′) ∧ Post2(y

′)
⇒ [x := x′][y := y′]Q)

⇔ { (x′, y′) \ (Guard1(x), Guard2(y) }

∀x′, y′ · (Guard1(x) ∧ Guard2(y) ∧ Post1(x
′) ∧ Post2(y

′)
⇒ [x := x′][y := y′]Q)

32

Chapter A
Proof of Theorem 1

Second part of the proof :

∀x′, y′.(Guard1(x) ∧ Post1(x
′) ∧ Guard2(y) ∧ Post2(y

′)
⇒ [x := x′][y := y′]Q)

⇔ { y \ x′ and x \ y′ implies [x := x′][y := y′]Q⇔ [y := y′][x := x′]Q }

∀x′, y′.(Guard1(x) ∧ Post1(x
′) ∧ Guard2(y) ∧ Post2(y

′)
⇒ [x := x′][y := y′]Q) ∧
∀y′, x′ : (Guard2(y) ∧ Post2(y

′) ∧ Guard1(x) ∧ Post1(x
′)

⇒ [y := y′][x := x′]Q)

⇔{ (x′, y′) \Guard1(x), (x
′, y′) \Guard2(y), y

′ \ Post1(x
′) and x′ \ Post2(y

′) }

(Guard1(x)⇒ ∀x′.(Post1(x
′)⇒ ∀y′.(Guard2(y) ∧ Post2(y

′)
⇒ [x := x′][y := y′]Q))) ∧
(Guard2(y)⇒ ∀y′ : (Post2(y

′)⇒ ∀x′.(Guard1(x) ∧ Post1(x
′)

⇒ [y := y′][x := x′]Q)))

⇔{ (x, y′) \Guard2(y), (y, x
′) \Guard1(x), x \ Post2(y

′) and y \ Post1(x
′) }

(Guard1(x)⇒ ∀x′.(Post1(x
′)

⇒ [x := x′](Guard2(y)⇒ ∀y′.(Post2(y
′)⇒ [y := y′]Q)))) ∧

(Guard2(y)⇒ ∀y′.(Post2(y
′)

⇒ [y := y′](Guard1(x)⇒ ∀x′.(Post1(x
′)⇒ [x := x′]Q))))

⇔ { Substitution �becomes such that� and de�nition of G1 and G2 }

(Guard1(x)⇒ ∀x′.(Post1(x
′)⇒ [x := x′][G2]Q)) ∧

(Guard2(y)⇒ ∀y′.(Post2(y
′)⇒ [y := y′][G1]Q))

⇔ { Substitution �becomes such that� and de�nition of G1 and G2 }

([G1][G2]Q) ∧ ([G2][G1]Q)

⇔ { Substitution [] }

[(G1 ; G2) [] (G2 ; G1)]Q

End Of Proof

33

Appendix B

Proof of Derivation 2.1

Let a, c1 and c2] be the following events:

a = select Guarda(x) then x : (Posta(x)) end

c1 = select Guardc1(yc1) then yc1 : (Postc1(yc1)) end

c2 = select Guardc2(yc2) then yc2 : (Postc2(yc2)) end

The Proof Obligation C ∧ I ∧ D ∧ J ⇒ wp_seq(E,¬[a]¬J) is equivalent
to:

∀y′c1 , y
′
c2
· (C ∧ I ∧ D ∧ J ∧ Guard c1 ∧ Post c1(y

′
c1
)

∧ [yc1 := y′c1]Guard c2 ∧ [yc1 := y′c1]Post c2(y
′
c2
)

⇒
Guarda ∧ ∃x′ · (Posta(x′) ∧ [yc1 := y′c1][yc2 := y′c2][x := x′]J))

34

Chapter B
Proof of Derivation 2.1

Proof

C ∧ I ∧ D ∧ J

⇒

wp_seq([c1, c2],¬[a]¬J)

⇔ { De�nition of wp_seq case non empty list }

[c1]wp_seq([c2],¬[a]¬J)

⇔ { De�nition of wp_seq case non empty list }

[c1][c2]wp_seq([],¬[a]¬J)

⇔ { De�nition of wp_seq case empty list }

[c1][c2]¬[a]¬J

⇔ { Substitution calculus ¬[a]¬J }

[c1][c2]Guarda ∧ ∃x′ · (Posta(x′) ∧ [x := x′]J)

⇔ { Substitution Calculus [c2]Q }

[c1]∀y′c2 .(Guard c2 ∧ Post c2(y
′
c2
)⇒

Guarda ∧ ∃x′ · (Posta(x′) ∧ [yc2 := y′c2][x := x′]J))

⇔ { Substitution Calculus [c1]Q }

∀y′c1 , y
′
c2
.(Guard c1 ∧ Post c1(y

′
c1
)

∧ [yc1 := y′c1]Guard c2 ∧ [yc1 := y′c1]Post c2(y
′
c2
)

⇒ Guarda ∧ ∃x′ · (Posta(x′) ∧ [yc1 := y′c1][yc2 := y′c2][x := x′]J))

End Of Proof

35

Bibliography

[1] J.-R. Abrial, The B-Book, Assigning Programs to Meanings, Cambridge
University Press, 1996.

[2] J.-R. Abrial, Modelling in Event-B, System and Software Engineering,
Cambridge University Press, 2010.

[3] A. Matoussi, F. Gervais, R. Laleau, An Event-B formalization of KAOS

goal re�nement patterns, Technical Report TR-LACL-2010-1, Univer-
sité Paris 12, January 2010.

[4] http://relaxng.org/compact-20021121.html, November 2002.

36

