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1 Introduction

The Formose ANR project (ANR-14-CE28-0009) aims to design a formally-grounded, model-based require-
ments engineering (RE) method for critical complex systems, supported by an open-source environment. The
project has been launched on November 17, 2014. The main partners are: ClearSy, LACL, Institut Mines-
Telecom, OpenFlexo, and THALES.

One of the main issues in the domain of RE for critical complex systems is to take into account the high
complexity of such systems, the need of a better integration of RE with verification and validation techniques
to ensure a better quality of requirements, and more generally the need of method guidance and tool support
during the process of elaborating high quality requirements models.

The aim of Work Package 2.1 (WP2.1) is to elicit a set of concepts for RE and then to define its abstract syntax
as a meta-model. All this work will be inspired by the case studies from WP1.1, as well as from the academic
state of the art and from the state of practice in the technical fields known to the partners. Two deliverables are
planned in WP2.1:

D2.1.a Language specification vl Document & software TO0+6

D2.1.b Language specification v2 Document & software TO+12
This document corresponds to the first deliverable: D2.1.a.

Our aim is to define a requirements modeling language integrating basic concepts of existing languages, such
as KAOS or Tropos/i*, and adding new ones to take into account the specific characteristics of critical com-
plex systems: their abstract architecture will be considered by allowing requirements to be defined at different
abstraction layers and verifying their consistency; the language will allow to specify not only non-functional re-
quirements related to safety and performance but also specific requirements related to the presence of different
operational modes and reconfigurations in such systems. The language will be multi-views (natural language,
graphical notations, formal notations) to be understandable by all the stakeholders. For verification purpose, we
will adopt existing and complementary formal methods, supported by efficient tools.

In this first deliverable, we focus on the state of the art. Section 2 is an introduction to requirements engineer-
ing. Then, in Section 3, the main formal concepts and languages that will be needed are introduced. Section 4
shows how requirements engineering is currently involved in formal methods. Sections 5 and 6 show the main
practices of RE in industry. Finally, section 7 concludes the document with the main lessons learnt.

Based on this state of the art and on the case studies from WP1.1, Deliverable D2.1.b will focus on the
definition of the new requirements engineering language.

2 Requirements Engineering

2.1 Aim and Obijectives of Requirements Engineering

Many studies [HBRO02, Sta95] have shown that one of the main reasons of failure in system development project
comes from a weakness during the requirements engineering phase. On the website Forum On Risks To The
Public In Computers And Related Systems !, there are many examples illustrating poor requirements analysis
(e.g. one of the most well-known is LAS (London Ambulance Service) [Fin96]). An average of 40% of projects
fail or do not meet all the expected requirements because of a weakness in requirements engineering. In 1976,
Bell and Tayer have pointed out that the non-conformance of system functions with respect to user requirements,
the inconsistency, incompleteness, and ambiguities of requirements documentation, are mainly involved in the
decrease of software quality [TB76]. These authors conclude that "the requirements for a system do not arise
naturally; instead they need to be engineered and have continuing review and revision".

The requirements engineering community tries to improve this important stage in system development. It aims
at defining methods, techniques, and tools in order to elicit, specify, negotiate, and validate the requirements of
the system to build. Consequently, requirements engineering is an fundamental activity for developing systems
of quality. It guarantees that the system to be built will meet user requirements. For [SS97], requirements
engineering first consists in collecting requirements and allows them to be expressed. Each requirement should
be correctly derived, allocated, followed, satisfied, verified, and justified.

'http://catless.ncl.ac.uk/Risks
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2.2 Definition: Concept of Requirement

There are many definitions in the literature, the oldest comes from Ross et Schoman [RJ77] in 1977: require-

ments definition is a careful assessment of the needs that a system is to fulfill. It must say why a system is needed,

based on current and foreseen conditions, which may be internal operations or an external force. It must say

what system features will serve and satisfy this context. And it must say how the system is to be constructed.
Another definition is proposed by the norm IEEE 610.12-1990:

1. A condition or capability needed by a user to solve a problem or achieve an objective;

2. A condition or capability that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed documents;

3. A documented representation of such a condition or capability.

According to this definition, requirements define both the user needs and objectives and the system properties
induced by the requirements and organizational constraints.

In the context of information systems, requirements engineering is defined by [Rol03] as an activity which
transforms a fuzzy idea into a precise specification of stakeholder’s needs, that shape the system to be built, and
therefore, defines the intended link between a system and its environment.

2.3 Requirements Taxonomy

In the literature [SomO07], there exist many kinds of requirements.

User Requirements.

Sommerville defines them as follows [Som04]. User requirements are statements expressed in natural language
associated to diagrams, which describe the services that the system must provide, and the constraints under
which it must perform. These requirements aim at capturing and at formalizing the needs of clients. The use of
a natural language is described by Sommerville as a necessary condition for making the communication with
stakeholders easier.

System Requirements.

A system requirement represents a system functionality or capability which allows it to solve or to fulfill an
objective of the client. According to [Som04], such requirements enumerate the functionalities, services and
operational constraints of the system. The system requirements document (also called functional specification
document) must be precise, since it defines what will be implemented. It is included in the contract between
the client and the developers. These requirements are derived from the user requirements, and represent an
expression of the proposed solution. The IEEE guideline [IEE98] for the building of system requirement spec-
ification (SyRS) describes the characteristics required for this level: A well formed requirement is a statement
of system functionality (a capability) that can be validated, must be met or possessed by a system to solve a
customer problem or to achieve a customer objective, and is qualified by measurable conditions and bounded
by constraints.

System requirements can be decomposed into two main categories: functional requirement and non-functional
requirement. According to the IEEE glossary for software engineering terminology [JM90], a functional re-
quirement specifies a function that the system or a system component must be able to execute. A non-functional
requirement represents a constraint or an expected behavior which is applied on the system. Such a constraint
can refer to the emerging properties of the software in development. According to Sommerville, non-functional
requirements are constraints on the services and functions proposed by the system. They include temporal con-
straints, and constraints on the development process and standards. In general, non-functional requirement apply
on the whole system, and not on particular functions or individual services.

Software (or Hardware) Requirements.

Software (or hardware) requirements are defined at the design stage. They are derived from the above-mentioned
requirements.
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2.4 Requirements Engineering Process

The different activities during requirements engineering are well defined by Sommerville et Sawyer [SS97]: re-
quirements engineering involves activities for discovering, documenting and maintaining a set of requirements
for a system. Requirements engineering (RE) activities are often divided into five categories: requirement elic-
itation, requirement analysis, requirement specification, requirement validation and requirement management.

Requirement Elicitation.

Requirement elicitation, which is the first stage of the process, is very important. It consists in collecting,
discovering, capturing the requirements from different sources, and by involving all the stakeholders.

Requirement Analysis.

This activity consists in analyzing the requirements and in solving the possible conflicts, often by using negoti-
ation.

Requirement Specification.

This stage consists in describing and structuring the requirements by using different kind of modelling languages
(informal, semi-formal and formal).

Requirement Validation.

This activity aims at verifying the requirements quality in terms of consistency and completeness, as well as
their adequacy with respect to the stakeholders wishes. In case of conflicts, a negotiation is initiated in order to
reconciliate all the stakeholders [Boul4].

Requirement Management.

This activity consists in following the requirements evolution; it identifies, controls and keeps a trace of the
subsequent modifications on requirements.

2.5 Requirements Engineering Approaches
Conventional Approaches.

In conventional approaches like SADT, MERISE, UML, etc., requirements engineering is integrated in the
analysis phase, and produces, thanks to a modeling process, a conceptual schema which describes an abstract
representation of data and transactions. The main objective is to describe what the system must do, i.e. its
functionalities. As indicated in Fig. 1, requirements engineering based on conceptual modeling is focused on
the question WHAT, to which we answer with a acquisition, modeling, validation cycle. For the acquisition
of domain knowledge, the task mainly consists of stakeholder interviews and specifications documentation.
This knowledge is then modeled in order to produce a conceptual schema. The latter is also used to validate
requirements thanks to prototyping.

These approaches are limited, because they represent a unique solution, and therefore avoids reasoning be-
tween different alternatives. Consequently, user requirements are poorly taken into account.

For applying these approaches, we suppose that requirements are stable and will not evolve in the future.
Today, because of the growing complexity of systems and the impact of new technologies, user requirements
evolve faster, and new approaches must be applied.

Goal-oriented Approaches.

Conventional approaches tend to focus on the WHAT rather than the WHY. Having answers to these WHY ques-
tions are important not only to help develop successful systems in the first instance, but also to facilitate the
development of cooperations with other systems, as well as the ongoing evolution of these systems [Yu97].
Goal-oriented approaches are focused on the WHY and WHAT questions. Fig. 2 illustrates such an approach.
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Figure 1: Requirements engineering in conventional approaches
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Figure 2: Goal-oriented approaches

A goal is a prescriptive statement of intent the system should satisfy through cooperation of its agents [LO1].
A Goal-Oriented Requirement Engineering (GORE) approach is concerned with the elicitation of the goals to be
achieved. Paradigms using the goal concept have been proposed by several approaches: KAOS [LO1], I* [Yu97],
CREWS [RSB98], GBRAM [Ant96]. The KAOS approach allows to express goals and their operationalization
into specifications of services and constraints (WHAT issues), and the assignment of responsibilities to agents
such as humans, devices and software pieces available or to be developed (WHO issues).

The KAOS method provides four complementary sub-models that describe the system and its environment:
a goal model, a responsibility model, an operation model and an object model. The main concept of the goal
model is the concept of goal. A goal is a prescriptive statement of intent the system should satisfy through
cooperation of its agents [LO1]. A goal model is an AND/OR graph where higher-level goals can be refined into
lower-level sub-goals, and then, recursively, into low-level sub-goals that lead to the satisfaction of requirements
of the system-to-be. The refinement relationship between a high level goal and its sub-goals is an AND/OR meta-
relationship. When a goal is AND-refined into sub-goals, all of them must be satisfied for the parent goal to be
satisfied. When a goal is OR-refined, the satisfaction of one of them is sufficient for the satisfaction of the parent
goal. A goal that cannot be refined further is assignable to an agent. An agent is an active system component
having to play some role in goal satisfaction. A goal assignable to an agent is a requisite. A requisite that is
placed under responsibility of an agent of the system-to-be is a requirement, whereas a requisite that is placed
under responsibility of an agent in the environment of the system is an expectation.

Scenario-based Approaches.

Users have often difficulties to directly express the expected objectives of the system. The idea behind of
scenario-based approaches is that it is easier to discover objectives from scenarios expressed in natural lan-
guage. A scenario [Rol03] is a sequence of interactions between the system to be and its environment described
in a restricted context.
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Scenarios are described by using several notations: informal, semi-formal or formal. Informal scenarios are
described in natural language [AR97, Eri95, Hol90], with videos [SWC94, WHP98], etc. Semi-formal scenarios
use structured notations like arrays [APT94], scripts [GR92], UML use case diagrams 2. Formal scenarios are
described by languages based on regular grammar [Gli95] or state diagrams [Har87]. They can be used to
simulate the system behavior and evaluate user interactions.

Some scenario-based approaches focus on the functionalities description of the the system to be [Fir94, Gli95,
AR97, APT94, GR92, SDV96]. They are restricted to functional requirements. There exist methods that com-
bine goals and scenarios [Pot95, LRB97, Kai00, AP98, WHP98, LW98, Rol03].

Limitations and Perspectives.

Despite the many contributions of the approaches presented above, there are still some issues that are not fully
addressed. Our past experience has allowed us to identify some topics that are relevant to the domain of critical
systems. Requirements engineering in the field of critical systems such as transportation systems requires ap-
proaches capable of taking into account the significant variability of the requirements. This issue is presented
in more detail in [SLGO09].

The notion of AND/OR refinement relation proposed by the goal based approaches is not sufficient to take
into account non-functional requirements and their relationship to functional requirements [GSL14]. Additional
concepts, such as the notion of contribution defined in the NFR Framework, are required to take into account
all the aspects related to non-functional.

Finally, thanks to the AND/OR refinement link, traceability links can be established between the high-level
goals and the requirements that are resulting. However, this is not enough to define traceability to the final
system. It would be useful to have explicit relationships such as those proposed in the SysML language >.
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3 Formal Languages and Tools

This section presents the formal languages/tools we plan to use in the context of the FORMOSE project, mainly
the Event-B language together with its ProB animator/model checker and the UPPAAL model checker. We have
adopted these language/tool for the following reasons:

1. the refinement technique of the Event-B method permits to deal with the complexity of a system by grad-
ually introducing its components;

2. the Event-B language is supported by tools (Rodin and AtelierB) that assist the user in the building of
complex projects. Different provers are associated with these tools to demonstrate the correctness of the
development;

3. ProB will be useful for two purposes: the validation of B specifications against a set of requirements by
animating them; the rapid detection of some errors before the proof phase by model checking the B model;

4. UPPAAL will be used to deal with timed aspects of the systems we will consider in the project.

3.1 Event-B method

Event-B is the successor of the B method [AbrO5] permitting to model discrete systems using mathematical
notations. The complexity of a system is mastered thanks to the refinement concept that allows to gradually
introduce the different parts that constitute the system starting from an abstract model to a more concrete one.
An Event-B specification is made of two elements: context and machine. A context describes the static part of
an Event-B specification; it consists of constants and sets (user-defined types) together with axioms that specify
their properties:

CONTEXT

Cont
Sets

S
Constants

C
Axioms

A
END

The dynamic part of an Event-B specification is included in a machine that defines variables V' and a set of
events V. The possible values that the variables hold are restricted using an invariant, denoted Inv, written
using a first-order predicate on the state variables:
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MACHINE
Name
SEES
Cont
Variables
Vv
Invariants
Inv
Events
E
Each event has the following form:
ANY
X
WHEN
G
THEN
Act
END

This event can be executed if it is enabled, i.e. all the conditions G, named guards, prior to its execution hold.
Among all enabled events, only one is executed. In this case, substitutions Act, called actions, are applied over
variables. In this paper, we restrict ourselves to the becomes equal substitution, denoted by (z := e).

The execution of each event should maintain the invariant. To this aim, proof obligations are generated. For
each event, we have to establish that:

VS, C, X. (ANG A Inv = [Act]Inv)

where [Act]Inv gives the weakest constraint on the before state such that the execution of Act leads to an after
state satisfying Inv.
We have also to prove the feasibility of each event by discharging the following proof obligation:

VS, C, X. (ANGA Inv = 3X.G)

Refinement is a process of enriching or modifying a model in order to augment the functionality being mod-
eled, or/and explain how some purposes are achieved. Both Event-B elements context and machine can be
refined. A context can be extended by defining new sets S, and/or constants C, together with new axioms A,.
A machine is refined by adding new variables and/or replacing existing variables by new ones V. that are typed
with a additional invariant Inv,. New events can also be introduced to implicitly refine a skip event. In this
paper, the refined events have the same form:

ANY

X
WHEN

Gr
THEN

Act,
END
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To prove that a refinement is correct, we have to establish the following two proof obligations:

— guard refinement: the guard of the refined event should be stronger than the guard of the abstract one:

(S, C, Sy, Cr, V, Vi, X, X,.).
(AN Ay AInv A Inv, = (G = G))

— Simulation: the effect of the refined action should be stronger than the effect of the abstract one:

WS, C, S, Cr, V, Vi, X, X,
(AN A, A Inv A Inv, A [Act,|Inv, = [Act]Inv)

3.2 The ProB model checker

ProB is an animator and explicit model checker, originally developed for the verification and validation of soft-
ware development based on the B language. Developed at the University of Diisseldorf starting from 2003,
ProB* implements a model checking technique to check LTL and CTL properties against a B specification.

The core of ProB is written in a logical programming language called Prolog. The probability of the state
space explosion problem is reduced by a high-level specification such as the B-Method, and Symmetry Reduc-
tion techniques [LBO3]. A mixed depth-first, breadth-first search strategy of ProB can encounter programming
mistakes where a depth-first search might fail and a breadth-first search might be too exhaustive [Leu(08].

The purpose of ProB is to be a comprehensive tool in the area of formal verification methods. ProB has
an easy to use user interface and offers guided animation of the state space. Its main functionalities can be
summarized up as follow:

1. ProB can find a sequence of operations that, starting from a valid initial state of the machine, moves the
machine into a state that violates its invariant,

2. giving a valid state, ProB can exhibit the operation that make the invariant violated,

3. ProB allows the animation of the B/EventB specification to permit the user play different scenarios from a
given starting state that satisfies the invariant. Through a graphical user interface implemented in Tcl/Tk,
the animator provides the user with: (i) the current state, (2) the history of the operation executions
that has led to the current state and (3) a list of all the enabled operations, along with proper argument
instantiations. In this way, the user does not have to guess the right values for the operation arguments.

4. ProB supports the model checking of the LTL [Pnu77] (linear temporal logic) and CTL [CE81] (Compu-
tational Tree Logic) assertions.

3.3 The UPPAAL tool

Developed jointly by Uppsala University and Aalborg University, UPPAAL [BDL"06] is an integrated tool
environment for modeling, simulation and verification of real-time systems, based on constraint-solving and
on-the-fly techniques.

The description language of UPPAAL is a non-deterministic guarded command language with data types.
It is suitable for systems modeled as a collection of non-deterministic processes with finite control structure
and real-valued clocks, communicating through channels and (or) shared variables. Typical application areas
include real time controllers and communication protocols in particular, those where timing aspects are critical.

The simulator and the model-checker are designed for interactive and automated analysis of system behav-
ior by manipulating and solving constraints that represent the state space of a system description. The model
checker is used mainly to check invariant and reachability properties by exploring the state space of a system, i.e.
reachability analysis. The simulator permits the examination of possible dynamic executions of a system during
early modeling (or design) stages and thus provides an inexpensive mean of fault detection prior to verification
by the model-checker which covers the exhaustive dynamic behavior of the system.

“https://github.com/bendisposto/probparsers
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Figure 3 gives an example of an UPPAAL model composed of two processes A and B. Each of these processes
is composed of four control nodes. The model uses two clocks = and y, one integer variable n and one channel
a. Each control nodes may be decorated with an invariant representing a constraints on the clock values in order
for control to remain in a particular node. Similarly, three labels types may be associated with each edge: a
guard, expressing a condition on the values of the clocks and the integer variables that must be fulfilled in order
for the edge to be triggered; a synchronization action which is executed when the edge is taken and finally a
number of clock resets and assignments to integer variables. For instance, the edge from Ag to A; is taken when
the value of the clock y is greater than 3. In that case, the process sends a message through the channel a and
resets the clock y.

A
y>=3, al!, y:=0 N\ y>=4 S\ n==5
© >0 >0 >0
(A0< 6) Al A2 A3
i
? o, wr, B3
X>=2, a@, X< ni=n+l o~
© >0 29, >0
BO c:Bl B2 B3
(x<=4}

Figure 3: An example UPPAAL model

In UPPAAL, properties are expressed using a simplified version of TCTL which consists of path and state
formulae. State formulae denote properties that are evaluated on each individual state whereas path formulae
quantify over paths or traces of the model. Path formulae can be classified into reachability, safety and liveness.
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4 Requirements Engineering and Formal Methods

In their seminal paper, Ross and Schoman stated that requirements definition is a careful assessment of the needs
that a system has to fulfill. It must say why a system is needed, based on current or foreseen conditions, which
may be internal operations or an external market. It must say what system features will serve and satisfy this
context. And it must say how the system is to be built [RS77]. Since then, requirements engineering has been an
active research area and it is widely accepted that it is a crucial phase in software and system development [vL0O].

There are different kinds of RE methods [NEOO] but goal-oriented RE methods, such as KAOS [DvLF93],
Tropos/i* [Yu97, BPGT04], GSN [KW04] or those developed in CRI-Paris 1° [NEKZ04], seem to be the
most promising for complex systems engineering. Goals are objectives that the system under construction
must achieve and refer to intended properties to be ensured. They are mostly expressed using natural lan-
guage, but some approaches propose to use formal languages. In particular KAOS defines behavioral goals
[vL0O9, LVLO2b, Let01] using Linear Temporal Logic (LTL) [Pnu77]. Goals are formulated at different levels of
abstraction from high-level, strategic concerns to low-level technical concerns, with different kinds of refinement
relationships between the levels. This feature could be very relevant for our project, as complex systems have
complex architectures with multiple components. Nevertheless, the abstract architecture of complex systems is
never considered, as existing work [vL03, JKPS10] deal with the intertwining of requirements and design or
even implementation architecture.

In KAOS, lowest-level goals, called requirements, are then realized by operations, which correspond to the
specification of state transitions. They are defined by descriptive pre- and post-conditions that characterize
state transitions corresponding to the execution of operations, together with prescriptive pre-, trigger- and post-
conditions that constrain the application of operations for each goal to be satisfied by the operation [vL09,
LVLO2b, LetO1, LvLO02a]. In other approaches, the concepts of commitments [CDGM10] or tasks [ Yu09] play
an analogous role of specifying goal realization by individual actions upon the system.

Another major concept is the one of agent, which stands for an active component of the system. In most
approaches, agents are in charge of realizing goals, as in KAOS and Albert & Albert II [DDBP94, DB97].
Tropos and i* also consider that agents aim for goals that can be different from the goals they are responsible
for. This consideration helps determining why each goal appears in a model. It is also a way for checking that,
when responsibilities are assigned to agents, they are not in contradiction with their interests.

A recent development at Onera [CBC11, CBC13] combines these various notions of goals and agents in a
single core modeling language called KHI. This language is equipped with an original semantics based upon
a multi-agent-temporal logic. The latter allows to assess complex problems such as the “assignment problem”
which asks whether a coalition of agents (components or sub-systems for instance) is able to satisfy a temporal
property. This approach seems to be particularly promising to address the intertwining between requirements
and architectural structure in RE for complex systems.

As seen above, many propositions have been equipped with a formal semantics. The most expressive formal-
izations are based upon temporal logics, such as LTL for KAOS or the novel Updatable Strategy Logic (USL)
for Onera. These formalizations pave the way for various verifications and assessments that can thus be done
very early in the development process, such as consistency checking, refinement correctness, conflict detection,
obstacle generation, etc. [vL0O9] or assignment feasibility [CBC11]. In principle, model-checkers are natural
candidates to perform these kinds of processing but, as of today, no formal chain from RE models to model-
checkers is available in practice. Besides, the formalization of domain models is usually not considered per se in
the aforementioned formalizations. More importantly, the use of formally-expressive temporal logics is needed
for certain types of goals and certain temporal properties are hard to write: this makes it hard for engineers to
formalize goals (the use of Dwyer’s patterns [DAC99] as in KAOS is welcome but insufficient in our opinion:
some extra language support would likely be beneficial) and this also impedes automated verification (cf. the
use of a first-order temporal logic with past operators in KAOS). Finally, many “non-functional” requirements
require other forms of logics, such as timed temporal logic: up to now, these approaches have not really been
considered in the RE framework.

Another way for giving formal semantics to requirements models is to combine semi-formal requirements
models with formal notations to be able to verify different types of properties. In [JHLR10], the authors present
an approach to devise a traceability relation between a requirements model, expressed using the formalism WR-
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SPM [GGJZ00], and its corresponding EventB formal representation. Based on a previous work [LGG™10] that
dealt with the combination of Problem Frame [JacO0O] and EventB, this approach defines three kinds of trace-
ability links by putting in relation the different elements of a WRSPM model and the EventB concepts, which
is interesting as both formalisms offer the possibility to model complex systems using a refinement mechanism.
As models evolve over time, evolution trace helps stakeholders verify that changes to the requirements reflect
their intentions. Explicit trace permits to explicitly link each non-formal requirement to at least one formal
statement. These traces are annotated with a justification that explains why the formal statement corresponds to
the non-formal requirement. Implicit trace permits to link the proof obligations, which ensure the correctness
of an EventB model, to the various invariants. Using these three traceability relations, it becomes possible not
only to point out the inconsistent requirements according to the falsifiable EventB proof obligations but also to
make both specifications evolve conjointly. Nevertheless, this approach is only illustrated through a case study,
no formal traceability rules are defined. Recently, a tool supporting this approach has been developed [HIL14].

In [JDBO09], an operational formal semantics for SysML activity diagrams is presented. However as the
transformation rules are defined in a single direction, it is not possible to benefit from the analysis of the formal
specification in order to improve or correct the corresponding SysML diagrams.

Finally, Mitsubishi Electric has investigated the translation of SysML diagrams into the B language [Bou02].
To this aim, translation rules have been defined to map SysML concepts into B. This work considers mainly
block diagrams and state machines for which abstract B machines and implementation components are derived.
As previous approaches, the translation rules are defined in one direction, no traceability is defined.

In [PEML10], authors illustrate an approach to decompose abstract requirements into more concrete ones
and their association with the different components of the related system. The behavior of these components
is modeled using SysML activity diagrams that are then mapped into UPPAAL for property verification pur-
pose. A similar but more advanced approach is also proposed in [GB11] in the aerospace context where a
system is represented by a set of axioms on which deduction can be carried out. Another approach consist-
ing of a Petri net-based formal semantics of LTL temporal requirements, represented by SysML diagrams, is
defined in [LAOFVO07]. A recent work at LACL consists in devising an approach to check the consistency of
a SysML/KAOS goals model by mapping it into an EventB specification [MGL11]. However, the translation
rules are uni-directional and no traceability links are defined.

Regarding these coupling work, the present project makes this state of the art move forward by proposing a
complete approach that will deal with the different aspects of requirements engineering including the definition
of a new description language to cover the most relevant concepts of the RE domain, its translation into formal
notations for properties verification purpose. Let us stress that the translation will be achieved in both directions
in order to be able to correct/change the RE model according to the results of the formal verification phase.

According to [EV10], even though software modeling has brought recent progress, still only one of three
software projects is successful. Among the proposed solutions to get better figures, better support for processes
and process modeling seems to be recognized as a major step [CKO92, Bar08]. Within the domain of require-
ments engineering, many studies conclude that process modeling is a very effective tool [CAG09]. Roughly,
the process of requirements engineering can be seen as a workflow of activities directed towards discovering,
specifying, classifying, and validating a set of requirements that the system under development must satisfy.
The use of process engineering for supporting requirements engineering is not a recent strategy but there is
still plenty of room for improvement. For example, a methodology for using Rational Unified Process (RUP)
to carry out requirements engineering has been proposed in [LSZT09]. Besides the use of processes, some
recently proposed requirements engineering process models reinforce the use of process modeling in terms of
defining the requirements engineering methodologies [PSSD10, PSR10]. More generally, often requirements
engineering approaches come with basic method relying on generic process model such as the one proposed
in [HID11]. Such basic workflows can serve as a base for a method for requirements engineering but to support
tooled enactment and full traceability as required by standards for critical systems we need more detailed process
description. The COSMOD-RE method [JKPS10] goes one step beyond proposing more detailed activities and
their precise dependencies. But, as more and more sophisticated process modeling languages supporting enact-
ment are defined and tools supporting them are released, we think that there is need to define more precisely
requirements engineering methods. This is even more true in the domain of critical system where a high degree
of quality must be certified.

In this context, the objective of the Formose project is to define a customizable method including a require-
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ments modeling language. The two main innovations, we intend to carry on, are: (1) defining in our method
a process modeling to support an enactment by a tool and (2) offering a high level of integration between the
various modeling tools and the provers to offer traceability and consistency checks.

References

[Bar08]

[Bou02]

[BPGT04]

[CAGO09]

[CBC11]

[CBC13]

[CDGM10]

[CKO92]

[DAC99]

[DB97]

[DDBP94]

[DvLF93]

[EV10]

[GBI11]

[GGIZ00]

[HID11]

J. Barjis. The importance of business process modeling in software systems design. Sci. Comput.
Program., 71:73-87, March 2008.

E. Bousse. Requirement management led by formal verification. Master’s thesis, University of
Rennes, France, 202.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An agent-oriented
software development methodology. Autonomous Agents and Multi-Agent Systems, pages 203-236,
2004.

E.C.S. Cardoso, J.P.A. Almeida, and G. Guizzardi. Requirements engineering based on business
process models: A case study. In Enterprise Distributed Object Computing Conference Workshops,
2009. EDOCW 2009. 13th, pages 320 —-327, Septembre 2009.

C. Chareton, J. Brunel, and D. Chemouil. A Formal Treatment of Agents, Goals and Operations
Using Alternating-Time Temporal Logic. In /4th Brazilian Symposium, SBMF 2011, pages 188—
203, 2011.

C. Chareton, J. Brunel, and D. Chemouil. Towards an Updatable Strategy Logic. In /st Int. Work-
shop on Strategic Reasoning (SR 2013), volume 112, pages 91-98, 2013.

A.K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Reasoning about agents and protocols
via goals and commitments. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, pages 457-464, 2010.

B. Curtis, M. I. Kellner, and J. Over. Process modeling. Commun. ACM, 35:75-90, September
1992.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state
verification. In ICSE, pages 411-420, 1999.

P. Du Bois. The Albert Il reference manual. Technical report, Technical report, University of Namur
(Belgium), 1997. Available at http://www.info.fundp.ac.be/ phe/albert.html, 1997.

E. Dubois, P. Du Bois, and M. Petit. Albert: An agent-oriented language for building and eliciting
requirements for real-time systems. In HICSS (4), pages 713722, 1994.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition. Sci.
Comput. Program., 20(1-2):3-50, 1993.

J. L. Eveleens and C. Verhoef. The rise and fall of the chaos report figures. IEEE Software,
27:30-36, 2010.

H. Graves and Y. Bijan. Using formal methods with SysML in aerospace design and engineering.
Ann. Math. Artif. Intell., 63(1):53-102, 2011.

C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A reference model for requirements and
specifications. IEEE Software, 17(3):37-43, 2000.

M. E. C. Hull, K. Jackson, and J. Dick, editors. Requirements Engineering, Third Edition. Springer,
2011.

14/22


http://www.info.fundp.ac.be/~phe/albert.html

FORMOSE

[HIL14]

[Jac00]

[JDB09]

[JHLR10]

[JKPS10]

[KWO04]

[LAOFVO07]

[LetO1]

[LGGT10]

[LSZ*09]

[LvLO2a]

[LVLO2b]

[MGL11]

[NEOO]

[NEKZ04]

[PEML10]

[Pnu77]

R FORMOSE ANR Project
ANR-14-CE28-0009

Stefan Hallerstede, Michael Jastram, and Lukas Ladenberger. A method and tool for tracing re-
quirements into specifications. Sci. Comput. Program., 82:2-21, 2014.

M. A. Jackson. Problem Frames - Analysing and Structuring Software Development Problems.
Pearson Education, 2000.

Yosr Jarraya, Mourad Debbabi, and Jamal Bentahar. On the meaning of sysml activity diagrams.
In 16th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, ECBS 2009, San Francisco, California, USA, 14-16 April 2009, pages 95-105.
IEEE Computer Society, 2009.

M. Jastram, S. Hallerstede, M. Leuschel, and A. G. Russo. An approach of requirements tracing
in formal refinement. In Verified Software: Theories, Tools, Experiments, VSTTE 2010, volume
6217 of Lecture Notes in Computer Science, pages 97-111. Springer, 2010.

M. Jarke, R. Klamma, K. Pohl, and E. Sikora. Requirements engineering in complex domains. In
Graph Transformations and Model-Driven Engineering, pages 602—620, 2010.

T. P. Kelly and R. A. Weaver. The goal structuring notation - a safety argument notation. In
Proceedings of the Dependable Systems and Networks 2004 Workshop on Assurance Cases, 2004.

M. Vinicius Linhares, R. Silva de Oliveira, J-M. Farines, and F. Vernadat. Introducing the modeling
and verification process in SysML. In IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA, Patras, Greece, pages 344-351. IEEE, 2007.

E. Letier. Reasoning about agents in goal-oriented requirements engineering. PhD thesis, Univer-
sité Catholique de Louvain, 2001.

F. Loesch, R. Gmehlich, K. Grau, C. Jones, and M. Mazzara. Report on pilot deployment in
automotive sector. Technical report, D7, DEPLOY Project, 2010.

P. Liegl, R. Schuster, M. Zapletal, C. Huemer, H. Werthner, M. Aigner, M. Bernauer, B. Klinger,
M. Mayr, R. Mizani, and M. Windisch. A methodology for process based requirements engineer-
ing. IEEE International Conference on Requirements Engineering, pages 193-202, 2009.

E. Letier and A. van Lamsweerde. Agent-based tactics for goal-oriented requirements elaboration.
In 24th International Conference on Software Engineering, ICSE, pages 83-93, New York, NY,
USA, 2002.

E. Letier and A. Van Lamsweerde. Deriving operational software specifications from system goals.
In 10th ACM SIGSOFT symposium on Foundations of software engineering, page 128. ACM, 2002.

A. Matoussi, F. Gervais, and R. Laleau. A goal-based approach to guide the design of an abstract
Event-B specification. In 16th IEEE International Conference on Engineering Complex Computer
Systems (ICECCS 2011), Las Vegas, USA, 27-29 April, 2011.

B. Nuseibeh and S. M. Easterbrook. Requirements engineering: a roadmap. In 22nd International
Conference on Software Engineering, Future of Software Engineering Track, June 4-11. ACM,
pages 35-46, 2000.

S. Nurcan, A. Etien, R. Kaabi, and I. Zoukar. A strategy driven business process modeling approac.

Special issue of the Business Process Management Journal on "Goal-oriented Business Process
Modeling", 2004.

J-F. Petin, D. Evrot, G. Morel, and P. Lamy. Combining SysML and formal models for safety
requirement verification. In International Conference on Software and Systems Engineering and
their Applications, 2010.

A. Pnueli. The temporal logic of programs. In /8th Annual Symposium on Foundations of Com-
pouter Science, pages 4657, 1977.

15722



R FORMOSE ANR Project
ANR-14-CE28-0009

FORMOSE

[PSR10] D. Pandey, U. Suman, and A.K. Ramani. An effective requirement engineering process model
for software development and requirements management. Advances in Recent Technologies in
Communication and Computing, International Conference on, 0:287-291, 2010.

[PSSD10] V. Pavanasam, C. Subramaniam, T. Srinivasan, and J. Kumar Jain D. Membrane computing model
for software requirement engineering. Computer and Network Technology, Inter. Conf. on, 0:487—
491, 2010.

[RS77] D. T. Ross and K. E. Schoman, Jr. Structured analysis for requirements definition. IEEE Trans.
Software Eng., 3(1):6-15, 1977.

[vLOO] A. van Lamsweerde. Requirements engineering in the year 00: a research perspective. In ICSE
2000, Proceedings of the 22nd International Conference on on Software Engineering, June 4-11,
2000, Limerick Ireland. ACM, pages 5-19, 2000.

[VvLO3] A. van Lamsweerde. From system goals to software architecture. In M. Bernardo and P. Inverardi,
editors, SFM, volume 2804 of Lecture Notes in Computer Science, pages 25—43. Springer, 2003.

[vL09] A. van Lamsweerde. Requirements engineering, From System Goals to UML Models to Software
Specifications. Wiley, 2009.

[Yu97] E. S. K. Yu. Towards modeling and reasoning support for early-phase requirements engineering.
In 3rd IEEE International Symposium on Requirements Engineering (RE’97), January 5-8, 1997,
Annapolis, MD, USA, pages 226-235. IEEE Computer Society, 1997.

[Yu09] E. S. K. Yu. Social modeling and i*. In Conceptual Modeling: Foundations and Applications,
pages 99-121, 2009.

5 ClearSy Requirements Engineering Process

5.1 Requirements level

Requirements may exists on several level in the development cycle of a project. They are initially derived from
the highe level expression of the customer need. The figure 4 on page 17 illustrates these different levels and the
different links relying upon requirements:

— between "customer requirements” and "specificaiton"

— between "specification" and "conception"

— between "specification" and "validation" (qualification tests)
— between "conception" and "development"

— between "conception" and "verification" (unitary tests)

Requirements ca also come from standards and other legal documents. In this case, such requirements are
considered as in the same level than customer’s ones or above them.

5.2 Tools
5.2.1 Requirements review

The requirements review takes place at the very beginning of the project. Participants to this review are :
— customer technical manager
— customer project manager

— industrial technical manager
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Legal
requirements

Customer
requirements

Figure 4: Requirements in project development cycle

— industrial project manager

The aim of such a review is to clarify the needs and requirements of the customer. It’s also the occasion for the
industrial to point out some problems or some facts that the customer hadn’t identified, or some conflicts in the
requirements. For the customer, it’s the moment for developing some of the ideas underlying its requirements.

5.2.2 Traceability matrix

The main tool allowing to deal with requirements is the traceability matrix. This document is a table which links
one requirement level to another and which gives the coverage. Each requirement of one level may be related to
one or several requirements of the other level. This document serves to show the completeness of the coverage
of the requirements of the higher level by the one of the lower level.

In the general case, completeness has to be shown for:

the coverage of "legal and customer requirements" by "specification requirements"

the coverage of "specification requirements" by "conception requirements"

the coverage of "specification requirements” by "validation test cases"

— the coverage of "conception requirements" by "development requirements"”

the coverage of "conception requirements"” by "verification test cases"

6 Thales Requirement Engineering Process

To master complexity and assure the performance of mission critical systems demands the right processes sup-
ported by the right tools. Chorus is the Thales reference system that provides a common and efficient way of
working across the globe. A common approach enables work to be shared across distributed teams, and then
seamlessly brought together into complex solutions. By using best practices, including the requirements of the
Capability Maturity Model Integrated (CMMI), Chorus contributes to risk reduction and achievement of cost
and schedule performance. Orchestra is an integrated suite of engineering tools for system and software en-
gineering. The Orchestra Engineering Desk provides a portal to access project engineering data and the tools
required to perform assigned tasks. Data is created once and accessed by teams wherever they reside. Orchestra’s
core is a model-driven approach to engineering, which supports solution verification at each level of elabora-
tion. By supporting work flow management, Orchestra aims to increase the efficiency and process compliance.
Orchestra is declined in three segments: Bronze, Silver, and Gold. Depending on the complexity of the project,
one has to choose one of the segment (as presented in Figure 5).
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— The Bronze segment is used for quick, cheap, and efficient developments based on everyday work tools.

— The Silver segment is used for medium complexity projects. It combines a full-functionality workbench
while still allowing a simple development.

— The Gold segment is used for the development of complex systems by ensuring a global end-to-end trace-
ability on large scale collaborations.

'I Development Component Medium Complexity Complex
Factory Dev & Integration Solution Solution
GOLD v v
SILVER
@ BRONZE v

Figure 5: Orchestra segments according to complexity

Formose aims to design a Requirement Engineering method for complex systems. As a consequence, we will
present in Section 6.1, some of the tools associated with the gold segment of the Orchestra workbench. We
will focus on the tools linked to requirement engineering and will not present the whole toolkit ( 50 tools). In
Section 6.2, we will present some of Thales’” definitions and practices regarding requirement engineering with
respect to what has been defined in Section 6.1.

6.1 Tools

When using the gold segment of the Orchestra workbench, two tools can be directly linked to requirement engi-
neering : DOORS and Reqtify. In the following, we will briefly present those tools and some of the adaptation
that were made to better suit Thales needs.

6.1.1 DOORS T-REK

DOORS is a tool developed and distributed by IBM. Thales uses an add-on to Doors called DOORS Telel-
ogic/Thales Requirements Engineering Kit (T-REK). DOORS T-REK provides:

— Tools to structure the information in a Data Model,
— Specific module types in order to be compliant with Thales development processes,

— Modularity in order to be able to support different levels of project complexity.

DOORS object contains the atomic information through a template of attributes : an object heading containing
a title, an object text containing a description, and a paragraph style describing the style information.

T-REK objects contains all the classical DOORS attributes plus a set of attributes that answers to specific
needs of the system engineering. Figure 6 presents an example of a template for a User Requirement.

Typical attributes for a requirement are for example:

— An attribute (a short, unique and persistent tag)
— Name (unique and specific)

— Description (short content)
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Requirement name

Identifier Stability

Priority

Description
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Figure 6: Example of a T-REK template for a User Requirement

Author

Source

Stability (describing expected change)

Criticity (estimated damage if not satisfied)

Priority (requirement selection criteria)

Contractual scope (must, should, may)

Status, version, allocation. ..

DOORS T-REK allows to trace different objects in your database with different type of links. A link is a
always directed from a source object to a target object. There exists 5 different types of links:

« satisfies » that links a requirement from a lower level requirement to a upper requirement. It is used

during requirement analysis. Its utilization is illustrated in Figure 7.

« is justified by » that links a requirement to a decision in the decision and/or justification. It is used

during requirement analysis and design phases. Its utilization is illustrated in Figure 8.

«refers to » that links a critical point or a conception choice to a requirement. It is used during requirement

analysis and conception phase. Its utilization is illustrated in Figure 8.

is illustrated in Figure 7.

« verifies » that links a verification activity to a requirement. It is used during IVVQ phase. Its utilization

« s allocated by » that links a component to a requirement. It is used during the allocation of requirements

to components. Its utilization is illustrated in Figure 7.

\Ifﬂ"'diilﬁ‘:_" & Verification Integration
e Procedures Procedures
Procedures |
vV Lo —
Verifies
Product
User System
Reduements T | P— ZCCEen
UR SR I Is Allocated byi PBS
L
I satisfies l Sub-System
Sub-System
Requirements
SR
Prime Item
Requirements
SR

Figure 7: Illustration of the links
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Figure 8: Illustration of the links between Doors objects (2)

6.1.2 Reqtify

Reqtify is a tool developed and distributed by Dassault Systémes.

A specific version of Reqtify (called ‘Reqtify in Orchestra’) has been developed to provide all the features that
allow it to be well integrated into the workbench Orchestra. The main features of Reqtify regarding requirement
management are coverage analysis and impact analysis of requirement changes.

6.2 Requirement Engineering Activities
Using the tools presented in Section 6.1, Thales has defined several process and «Tooled-Up Practices » for
defining, designing, producing, and testing a system.

6.2.1 Requirements Elicitation

In Thales processes, requirement elicitation is an iterative activity. Requirements are collected through various
means (workshops, interviews, technical document reviews, market analysis, protypes...) and therefore are of
different nature. They can be expressed in a natural language, through a semi-formal or formal model, or thanks
to a combination of different means (textual and model requirements).

6.2.2 Requirement Analysis

First of all, requirements at Thales should verify a number of properties defined (quality criteria) defined with
the provider of the requirements. Typically, these properties include:

Clearly and properly stated

Uniquely identified

Appropriate to implement

Verifiable (through test, demonstration. . .)

Traceable to an upper level requirement

Moreover, Thales processes requires some additional work to be done when receiving and analysing require-
ments:

— Prioritization

Projects are done with limited ressources. Therefore, it is important to have priorities on the require-
ments to allocate ressources to the high-priority requirements in case of conflict. It is also used to solve
inconsistencies, plan releases. ..
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— Separation between key and critical requirements
At a system level, key and critical requirements are identified. Key requirements are those that impact the
greater part of the costs. Critical requirements are those that may affect the development success.
— Requirement categorization
Requirements are segregated between:
— Functional requirements

Functional requirements define what are the system’s behaviors, the functions or tasks to be per-
formed as well as the data exchanged with external systems.

— Non-functional requirements

Non-functional requirements define the qualities of the system. They can cover performance, er-
gonomics, reliability, maintainability, availability, security and privacy, safety, integrity. ..

— Constraints
Constraints define the limitation of the solution space for the system design. Constraints can cover :
physical limitations (dimensions, weight...), interfaces with external devices, environment (mech-
nanicals, climatic...), domain-related standards, logistics, development processes and strandard,
legal obligations, cost and lead time. ..

6.2.3 Requirement Specification

Thales requirement structuring is done through DOORS T-REK as described in Sect. 6.1.1. It is suggested that
requirements follow a specific template such as the one in Figure 9.

[in this context] shall [do something][delivering
this performance]

Figure 9: Illustration of a requirement template

Moreover, the structural architecture of all the different layers of requirements (from system requirement to
lower levels) is inspired by the MIL-STD-498 standard.

6.2.4 Requirement Validation

Validation of a set of requirement covers several activities in Thales processes. Each activity must ensure one
of the following property:

— Completeness : Defined as reached when the requirement set no longer needs amplification according to
all stakeholders

— Consistency : Defined as reached when no individual requirements are contradictory, requirements are
not duplicated, and when the terms used throughout the document are well defined and non redundant

— Affordable : Defined as reached when the complete set of requirements can be fulfilled by a solution that
meets the life cycle constraints.

— Bounded :Defined as reached when the set of requirements does not go beyond what is needed to satisfy
the stakeholders needs.

6.2.5 Requirement Management

Thales uses a broader definition of Requirement Management than the one defined in Section 6.1. Activities in
this category include:

— Organization of the requirements by using DOORS T-REK as seen in Section 6.1.1
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— Managing requirements changes. Using DOORS T-REK, when new requirements are received, the re-
quirement database is updated with the new requirements or the new version if modified. DOORS is also
used to maintain the requirement change history with a rationale for each change. Using Reqtify, impact
analysis on the whole set of document and activities is also identified.

— Maintaining a bi-directional traceability of the requirements. This is done by using DOORS T-REK and
the « is justified by » links between set of requirements.

7 Conclusion

This document was an introduction to requirements engineering and its application with formal methods and
in industry. Our aim is to define a requirements modeling language which takes into account the specific char-
acteristics of critical complex systems: cross-references between functional and non-functional requirements,
traceability, modularity and formal verification.

Based on this state of the art and on the first case studies, we have chosen to start from the SysML system
modeling language and the goal-oriented KAOS requirements modeling language. The first meetings with the
industrial partners lead us to add new views like ontology, context and domain models, in order to determine the
vocabulary and the concepts used in the system. The definition of the new requirements engineering language
will be described in Deliverable D2.1.b.

22/22



	Introduction
	Requirements Engineering
	Aim and Objectives of Requirements Engineering
	Definition: Concept of Requirement
	Requirements Taxonomy
	Requirements Engineering Process
	Requirements Engineering Approaches

	Formal Languages and Tools
	Event-B method
	The ProB model checker
	The UPPAAL tool

	Requirements Engineering and Formal Methods
	ClearSy Requirements Engineering Process
	Requirements level
	Tools

	Thales Requirement Engineering Process
	Tools
	Requirement Engineering Activities

	Conclusion

