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1 Introduction
The Formose ANR project (ANR-14-CE28-0009) aims to design a formally-grounded, model-based requirements en-
gineering (RE) method for critical complex systems, supported by an open-source environment. The project has been
launched on November 17, 2014. The main partners are: ClearSy, LACL, Institut Mines-Telecom, OpenFlexo, and
THALES.

One of the main issues in the domain of RE for critical complex systems is to take into account the high complexity of
such systems, the need of a better integration of RE with verification and validation techniques to ensure a better quality
of requirements, and more generally the need of method guidance and tool support during the process of elaborating high
quality requirements models.

The aim of Work Package 2.1 (WP2.1) is to elicit a set of concepts for RE and then to define its abstract syntax as a
meta-model. All this work will be inspired by the case studies from WP1.1, as well as from the academic state of the art
and from the state of practice in the technical fields known to the partners. Two deliverables are planned in WP2.1:

– D2.1.a: Language specification v1

– D2.1.b: Language specification v2

This document corresponds to the second deliverable: D2.1.b.
Our aim is to define a requirements modeling language integrating basic concepts of existing languages, such as KAOS

or Tropos/i*, and adding new ones to take into account the specific characteristics of critical complex systems: their abstract
architecture will be considered by allowing requirements to be defined at different abstraction layers and verifying their
consistency; the language will allow to specify not only non-functional requirements related to safety and performance
but also specific requirements related to the presence of different operational modes and reconfigurations in such systems.
The language will be multi-views (natural language, graphical notations, formal notations) to be understandable by all the
stakeholders. For verification purpose, we will adopt existing and complementary formal methods, supported by efficient
tools.

The first deliverable focused on the state of the art. This deliverable describes the requirements engineering language
we have adopted in the project. To specify all the informations necessary in requirements enginering, two kinds of models
are used: a product model and a process model. A product model describes the product (system) that will be achieved.
It is composed of a product requirements model and a domain model. The process model describes the process used to
build the product model. It is composed of a specification of the Process and a context model. Section 2 summarizes the
SysML/KAOS requirements modeling language and Section 3 presents the SysML/KAOS domain modeling language. The
process model is described in the Deliverables D4.1.b and D4.1.c.

2 SysML/KAOS requirements modeling language
2.1 Overview of the goal model
In the conclusion of the first deliverable (Deliverable D2.1.a : Language specification v1), we state that, based on the
state of the art and on the first case studies, we have chosen to use the SysML/KAOS approach as the requirements modeling
language. The language is detailed in [GSL13], [GS10], [GS11], we just give an overview. The SysML/KAOS language is an
extension of the SysML requirements language[OMG12]with themost relevant concepts of the KAOS goal model [DvLF93]
and the NFR Framework [CNYM00]. Several models exist to represent goal oriented requirements such as i* [Yu97], Goal-
Based Requirements Analysis Method (GBRAM) [Ant96]. The choice of KAOS is motivated by the following reasons.
Firstly, it permits the expression of several models (goal, agent, object, behavioral models) and relationships between
them. Secondly, KAOS provides a powerful and extensive set of concepts to specify goal models. This facilitates the
design of goal hierarchies with a high level of expressiveness that can be considered at different levels of abstraction. As
SysML is an extension of UML, it provides concepts to represent requirements and to relate them to model elements,
allowing the definition of traceability links between requirements and system models. However the set of SysML concepts
for requirements modeling is not as extensive as in goal models. The objective of the SysML/KAOS language is to take
advantage of both models while considering functional and non functional requirements from the earlier development
phase.

In SysML/KAOS, a functional goal prescribes intended behaviors where some target condition must sooner or later hold
whenever some other condition holds in the current system state (this state is an arbitrary current one). Non functional
goals express qualities of the system to be developed such as efficiency, accuracy, security and so on. A goal model is an
AND/OR graph where higher-level goals can be refined into lower-level sub-goals, and then, recursively, into low-level
sub-goals that lead to the satisfaction of requirements of the system-to-be. When a goal is AND-refined into sub-goals, all
of them must be satisfied for the parent goal to be satisfied. When a goal is OR-refined, the satisfaction of one of them is
sufficient for the satisfaction of the parent goal.

An important concept of SysML/KAOS is the analysis and modeling of the impact of non-functional goals on functional
goals, which can be expressed in different manners. We have shown that non-functional goals may have an impact on the
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choices and decisions that are taken when refining functional goals and when transforming them into target systems. In
addition, analyzing non-functional goals can lead to the identification of new functional goals, which must be integrated
with the existing functional goal hierarchy.

Therefore, the SysML/KAOS approach provides three main steps. In the first step, functional and non-functional re-
quirements are specified in two separate goal models. Then, the impact of the non functional requirements on functional
ones are analyzed and described. In the last step, a final integrated goal model is obtained.

Figure 1 presents the complete metamodel of the SysML/KAOS goal language.

 

Figure 1: The SysML/KAOS goal metamodel

In the FORMOSE project we have extended the language to consider time-relative requirements since they are very
important in critical systems, violation of which can put human lives at risk or damage assets and then very quickly lead
to critical situations. This extension is described in Appendix A.

2.2 Illustration
To illustrate the SysML/KAOS method, we use an excerpt of the landing gear system case study which deals with the safe
extension/retraction of the landing gear of an aircraft [BW14]. Figure 2 is an excerpt of the goal model, focused on the
purpose of landing gear expansion (makeLGExtended). TheAND refinement operator is used to specify the subgoals that
must be achieved to realize a parent goal. For instance, to achieve the extension of the landing gear, the handle must be put
down (putHandleDown) and landing gear sets must be extended (makeLSExtended). To extend the landing gear sets, the
landing gear doorsmust be opened (makeDoorsOpen), the gearsmust be extended (makeGearsExtended) and the landing
gear doors must be closed in order to stabilise the gears (makeDoorsClosed). Conversely, the OR refinement operator is
used to specify distinct ways of achieving a parent goal: the realization of one of the subgoals is sufficient to achieve the
parent goal. For instance, the handle can be automatically put down by a software agent (putHandleDownAutomatically),
if the extension conditions can be clearly specified such as the altitude below 50 ft. However, another possibility is to let
the pilot manually put down the handle (putHandleDownManually).

3 SysML/KAOS domain modeling language
3.1 Current state on domain modeling in requirements engineering
A domain model gathers all the informations on the domain of the studied system that must be known and understood to
allow, on one hand, to specify the system requirements and, on the other hand, to implement and verify the system. It

3/47



FORMOSE ANR Project
ANR-14-CE28-0009

 

Figure 2: Excerpt from the landing gear system goal diagram

can be perceived at different levels of abstraction. Manfred Broy [Bro13] states that a domain model is composed of the
following elements:

– the vocabulary, terminology that describes the concepts, the data types, the domain functions and the domain rules

– a context model that describes the different elements that interact with the system, such as the software, the physical
systems and the stakeholders. It defines the boundary between the system and its environment.

In [vL09], the domain of a system is specified by an object model described by UML class diagrams. An object within
this model can be an entity if it exists independently of the others and does not influence the state of any other object, an
association if it links other objects on which it depends, an agent if it actively influences the system state by acting on
other objects or an event if its existence is instantaneous, appearing to impulse an update of the state of the system. This
approach, which is essentially graphic and little formal as argued in [MC01] is difficult to exploit in case of critical systems
[NVLG14]. Moreover, it does not offer mechanisms for referencing a model within another, which limits the reusability
of models.

In [ML16], in addition toUML class diagrams, the representation of the system domain involvesUML object diagrams
and ontologies. The case study presented reveals the use of ontologies for the representation of domain knowledge; the
model obtained is named the domain model. Furthermore, object and class diagrams are used in the modeling of system
structure and constraints and lead to the structural model which must conform to the domain model. This approach, like
the previous one, usesUML diagrams which are graphical representations, not very formal [MC01] and slightly expressive
[NVLG14]. Moreover, the use of several languages for system domain modeling obliges the user to master and manipulate
them all, which is an extra source of complexity.

In [NVLG14], ontologies are used not only to represent domain knowledge, but also tomodel and analyze requirements.
The proposed methodology is called knowledge-based requirements engineering (KBRE) and is mainly used for detection
and processing of inconsistencies, conflicts and redundancies among requirements. In spite of the fact that KBRE proposes
to model domain knowledge through ontologies, the proposal focuses on the representation of requirements and proposes
nothing regarding domain modeling.

3.2 Our approach
3.2.1 Context model

The metamodel that allows to describe context models is an extension of the SysML metamodel. It is presented in Figure
3. A Context Definition Diagram is composed of one System Block that represents the studied system and several Context
Relationship, each one relates a system to an entity (Context Block) of its environment.

Figure 4 shows the context model of a landing gear system that is a part of an aircraft.

3.2.2 Domain model

In order to model the vocabulary of the domain model we use the concept of ontology. Our approach is described in the
article contained in Appendix B. It is a pre-print version of the article published in a book containing works from the NII
Shonan meeting called "Implicit and explicit semantics integration in proof based developments of discrete systems" in
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Figure 3: The product context metamodel

Figure 4: An example of a product context diagram

November 2016. However, the use of SysML/KAOS on the case study called SATURN, led us to extend the domainmodeling
language and make it more suitable for use in system modeling: the language has been adjusted to allow the definition
of associations between associations and to support variable data items. This completes the definition of the domain
modeling language: associations have been generalised into concepts and variability has been extended to individuals.
These extensions are described in the article contained in Appendix C.

4 Conclusion
This document is devoted to the presentation of the domain modeling language. It is specified with a set of metamodels.
It has been validated on several case studies :

– Specification of a transportation system for the city of Montréal ([FLF+19])

– Modeling of the Hybrid ERTMS/ETCS Level 3 Standard ([FFLM18b])
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– Specification of the system controlling the level of water in a steam-boiler ([FFLM18a], [FFL+18])

– Specification of the rail communication protocol SATURN ([FLB+19])

– Specification of the airplanes localization system DVOR (THALES, confidential)

The semantics of domain models will be defined by translation rules into the B System language. This will be described
in Deliverable D3.2.a.
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Abstract—Critical systems are used today in a variety of do-
mains, such as transportation, health, aeronautics, etc. They are 
subject to complex temporal requirements, violation of which can 
put human lives at risk or damage assets and then very quickly 
lead to critical situations. Therefore, time-relative requirements 
and dependencies should be considered from the early require-
ments engineering phase because even on this phase, stakeholders 
are already able to decide about them. Even if the current Re-
quirements Engineering (RE) approaches, and particularly Goal 
Oriented Requirements Engineering (GORE) approaches pro-
vide a high degree of flexibility, they do not seem to propose ex-
plicit constructs to deal with time-relative dimensions. We have 
proposed in previous works, SysML/KAOS, a GORE approach 
to manage functional and non-functional requirements in com-
plex critical systems. While this approach has been used in a va-
riety of research projects, it does not yet provide explicit repre-
sentation of time and then limits possibilities for real-time sys-
tems modeling. This paper presents a part of our on-going re-
search, which aims to contribute to this issue by introducing time 
semantics into SysML/KAOS Goal based concepts.  

Index Terms—Temporal and real time requirements, critical system, 
Non-Functional Requirements, Goal-oriented requirements modelling, 
dependencies FR-NFR 

I. INTRODUCTION  
Critical systems are used today in a variety of domains, 

such as transportation, health, aeronautics, etc. They are subject 
to complex temporal requirements, which violation can risk 
lives or damage assets and then very quickly lead to critical 
situations. Managing these requirements as secondary activity 
is not optimal; we argue that they should be considered from 
the early requirements engineering phase because even on this 
phase, stakeholders are already able to decide about temporal 
requirements and dependencies between them. 

Two types of requirements relating to time are generally 
considered: temporal requirements and timed requirements. 
The first deals with the notion of time qualitatively while the 
second one allows quantitative reasonning about time. In this 
paper we will use the term Time-relative  to encompass both 
types. 

 

Different approaches [1][2][3] have been proposed for the 
elicitation and analysis of early requirements. Although provid-
ing a high degree of flexibility, these approaches do not seem 
to provide explicit constructs to deal with all the time-relative 
dimensions. KAOS method enables formalization of individual 
goals using LTL [4]. While it is essential for rigorous analysis, 
this practice generally requires significant investment and ex-
pertise. In addition, it is not explicitly address the mentioned 
time-relative issues. 

We have proposed in previous works SysML/KAOS [5][6], 
a Goal Oriented Requirements Engieering (GORE) approach to 
manage functional and non-functional requirements in complex 
critical systems. Even if this approach has been used in a 
variety of research projects, it does not yet provide explicit 
representation of time and then limits possibilities for real-time 
systems modeling. Thus, we need to extend it expressiveness 
for specification of this kind of systems requirements. This 
paper represents a first step towards this objective; it presents a 
work in progress that aims at extended SysML/KAOS by intro-
ducing time semantics into Goal based concepts.  

For the expression of time-relative concepts, we focused on 
user-friendly graphical notations along with constrained natural 
language instead of formal languages such as TCTL [7] and 
LTL [4]. Indeed, we argue that it would be more effective to 
provide notations that are intuitive enough to be used by stake-
holders lacking formal languages training, while still providing 
a formal semantics that can be used as an input for formal veri-
fication methods. In order to reach this objective, we have cho-
sen to base our work on the pattern-based approach proposed 
by Dwyer and al [8][9], which provide a catalogue of patterns 
for the description of formal requirements in user-friendly 
manner. However, The Dwyer patterns allow to reason about 
occurrence and order of events or states, but not explicitly 
about their timing. Consequently, we have adopted a subset of 
the patterns, which are useful for our purpose and extended 
them with timing concepts. The Landing Gear System Case 
(LGS) study [11] will be used to illustrate the presented con-
cepts. 

The remainder of the paper is structured as follows. The 
next section presents some background that the paper relies on. 
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Section 3 presents and discusses the extensions proposed to 
manage explicitly time-relative requirements. Section 4 dis-
cusses related work and finally Section 5 concludes the paper 
and gives an overview about future work. 
 

II. BACKGROUD 
This section briefly introduces some background, which the 

paper relies on. It respectively presents an overview of 
SysML/KAOS, summarizes the Dwyer patterns approach and 
gives a short description of the Landing Gear Case study that 
will be used to illustrate the concepts. 

A. An overview of SysML/KAOS Approach 
SysML/KAOS approach is based on KAOS [1] and the 

NFR Framework [3], two approaches largely recognized and 
used in requirements engineering over the past decade. It is 
founded on two main ideas: 

• To integrates non-functional requirements much earli-
er, at the same level of abstraction than functional re-
quirements; and emphasizing the impact of non-
functional requirements on functional requirements. 

• To take advantage of the contribution of SysML, such 
as easily relating requirements to specifications and 
easily providing tool support. 

The main contribution of this approach is the analysis and 
modelling of the impact of non-functional goals on functional 
goals, which can be expressed in different manners. In the pre-
sent state of our work, we have shown that non-functional 
goals may have an impact on the choices and decisions that are 
taken when refining functional goals and when transforming 
them into target systems. In addition, analysing non-functional 
goals can lead to the identification of new functional goals, 
which must be integrated with the existing functional goal hier-
archy.  

Therefore, this approach provides three main steps. In the 
first step, functional and non-functional requirements are speci-
fied in two separate goal models. Then, the impact of the non-
functional requirements on functional ones are analyzed and 
described. In the last step, a final integrated goal model is ob-
tained. Functional requirements are represented with concepts 
of the KAOS goal model and non-functional are represented 
with concepts inspired and adapted from NFR Framework. See 
[5][6] for more details. 

B. Overview on property specification patterns 
Property specification patterns were first introduced by 

Dwyer et al. [8][9] These patterns include a set of commonly 
occurring high-level specification abstractions for formalisms 
like LTL [4], CTL [10] or TCTL [7]. For example, the property 
specification ”Globally, S responds to P” is expressed as AG(P 
⇒ AF(S)) in CTL or as !(P ⇒ ♦S) in LTL [4]. They enable 
stakeholders who are not familiar with such formalisms to read 
and write formal specifications. According to [9], 92% of 555 
property specifications collected from different sources 
matched one of the patterns. 

A property specification consists of a pattern, which de-
scribes what must occur and a scope, which describes when the 
pattern must hold. 

As shown in Figure 1, Patterns are organized in hierarchy, 
based on their semantics, which distinguishes properties that 
deal with the occurrence and ordering of states/events during a 
system execution. We summarize below the most important 
patterns; a more detailed description of these patterns can be 
found in [8][9].  

 

 
Fig. 1.  Pattern hierarchy 

The symbols P or Q represent given states/events. 
Occurrence patterns 

• Absence: P does never occur within a scope. 
• Universality: P occurs throughout a scope. 
• Existence: P must occur within a scope 
• Bounded Existence: P must occur at least / exactly or at 

most k times within a scope. 
Order patterns 

• Precedence: P must always be preceded by Q within a 
scope 

• Response: P must always be followed by Q within a 
scope 

• Chain Precedence / Chain Response: A sequence P1, . 
. . ,,Pn must always be preceded /followed by a se-
quence Q1, . . . , Qm within a scope. 

 

 
Fig. 2.  Pattern scopes 

 
Scopes (see Fig. 2) define, when the above patterns must hold:  

• Global: the pattern must hold during the complete sys-
tem execution.  

• Before: the pattern must hold up to a given event X. 
• After: the pattern must hold after the occurrence of a 

given event X. 

FORMOSE ANR Project
ANR-14-CE28-0009

9/47



• Between: the pattern must hold from the occurrence of 
a given X to the occurrence of a given Y 

• Until: the same as ”between”, but the pattern must hold 
even if Y never occurs 

 
With the above patterns, properties like ”An occurrence of 

event or state A must be followed by an occurrence of event or 
state B” can be expressed. However, They do not explicitly 
include timed properties like ”An occurrence of event A must 
be followed by an occurrence of event B within x time units”. 
In this work (see next section), we have selected the patterns 
that are relevant to our purpose and add some extensions in 
order to include timed issues, which are essential for real-time 
critical systems.  

C. Landing Gear System (LGS) overview 
The landing gear system [11] is in charge of maneuvering 

landing gears and associated doors. It is composed of 3 landing 
sets: front, left and right. Each landing set contains a door, a 
landing gear and associated hydraulic cylinders. This system is 
representative of critical embedded systems. The action to be 
done at each time depends on the state of all the physical de-
vices and on their temporal behavior. 

The architecture and the requirements of the system are 
presented in [11]. It is composed on three main parts: a me-
chanical part which contains all the mechanical devices and the 
three landing sets, a digital part including the control software, 
and a pilot interface. 

The only human input to the system is the pilot handle: 
when pulled up it orders the gears to retract, and when pulled 
down it orders the gears to extend. The signal from the pilot 
handle is fed both to the replicated computer system and to the 
analogical switch. The purpose of the analogical switch is to 
protect the system against abnormal behavior of the digital part. 
In order to prevent inadvertent order to the electro-valves, the 
general electro-valve can be stimulated only if this switch is 
closed. A set of discrete sensors informs the digital part about 
the state of the equipment.  

III. MODELING TIME-RELATIVE REQUIREMENTS WITH 
SYSML/KAOS 

This section presents the main contribution of the paper. It 
describes the concepts introduced in SysML/KAOS meta-
model to extend it expressiveness for the specification of goal 
models with time-relative dimension. Fig. 3 shows an extract of 
the extended meta-model. For space reason, we focus on the 
proposed extensions that are represented by the gray boxes; 
refer to [6] for more details on other concepts.  

As shown in Fig. 3, both functional and non-functional re-
quirements are represented as abstract goals, which are recur-
sively refined into sub-goals, thanks to the AND/OR refine-
ment mechanism. A goal that cannot be further refined is called 
elementary (functional or non-functional) goal.  

We propose to specify time-relative goals as specialization 
of non-functional goals (see Fig. 3). This activity is mainly 
supported by a classification, which is described in the 
following section along with the associated concepts. These 
concepts are illustrated with examples from the LGS case 
study. 

 

A. Specification of time-relative goals  
As we said, the modeling of time-relative goal is mainly 

supported by our classification, which is built upon the proper-
ty patterns introduced in Section 2. In this context, the main 
objective is to abstract the property patterns and apply them at 
goal level. We have considered both the sub-categories order 
and occurrence, which we have extended with real-time 
concepts. 

More precisely, our main objective is twofold: to provide 
the ability to express goals regarding the temporal order in 
which they need to be achieved and to place time bound on the 
duration of the achievement of goals. 

 
 
 
 
 
 
 
 

 
Fig. 3.  An extract of the extended SysML/KAOS meta-model
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Thanks to this work, time-relative goals can be easily ex-
pressed by the requirements engineer in structured natural 
language and can be potentially mapped into some formal 
languages for verification (LTL, CTL etc.).  Finally, this 
work supports both the elicitation, refinement and operation-
alization steps. 

 
1) Classification overview 

As the other concepts have already been presented in 
Section 2 (note that Untimed Response and Untimed Prece-
dence correspond respectively to Response and Precedence 
in section 2), we describe here only the proposed extensions, 
which are represented by the gray boxes in Fig. 4. 

 

 
Fig. 4.  Time-relative goal classification 

The symbol P or Q represent a given state/event. 
 

Occurrence sub-categories 
• Periodic: describes properties that address periodic 

occurrences. It denotes that P must occur recurrently 
every x time units. For example, the computing 
module of the LGS must check the sensors every 20 
milliseconds. 

• Timed existence: denotes that starting from the cur-
rent point of time, P must occur (at 
least/exactly/most) within x time-units. For instance, 
the landing sets doors must be closed within a 
maximum of 10seconds. 

 
Order sub-categories 

• Timed response: denotes that P must always be fol-
lowed by Q but Q must occur within a given time 
span. For instance, the gears will be locked down 
and the doors will be seen closed less than 15 se-
conds after the handle has been pushed. 

• Timed precedence: denotes that P must always be 
preceded by Q but after a delay. For example, stimu-
lations of the general electro-valve and of the ma-
neuvering electro-valve must be separated by at least 
200 milliseconds  

• Synchronization: specifies a relationship between 
two or more properties indicating that the behavior 
of the latter must be performed at the same time. For 
example the simultaneity of the three landing gears 
during the outgoing sequence, and the retraction se-
quence. 

 
2) Structured natural language 

Several formalisms (LTL [4], CTL [10], TCTL [7], 
Timed Automata [12]) have been proposed in order to speci-
fy time-relative properties. As we said, even if using these 
formalisms is essential for verification and validation this 
remains tedious and subject to error. Thus, it is necessary to 
provide a solution that hides the formal foundation to the 
requirements engineer. Thanks to the previous classification, 
the different categories of goals can be specified in a struc-
tured natural language and may be optionally mapped into 
formal languages. For instance, the Timed Response goal 
(Globally Q responds to P within x time units) is expressed 
in TCTL by AG(P⇒AFx (Q )).  

The structured natural language specification captures the 
scope (globally, before, after, between, or after-until) fol-
lowed by the category (timed existence, periodic, timed re-
sponse, untimed response, synchronization, untimed prece-
dence, timed precedence). In order to help the requirements 
engineer, we provide a generic syntax expressed using BNF 
(Backus Naur Form) notation. An extract of this syntax is 
presented below. 

 
<Time-Relative Goal> ::=<scope> “;” <specification> 
<scope> ::=“globally” | “before”<entity>| “after” <entity> | 
“between” <entity> “and” <entity> 
<specification> ::=<entity>  <GoalCategory> <entity> 
<timeInterval> 
<entity> ::=state | event 
 

An example from the Landing Gear System of such spec-
ification is “Globally; the gears must be locked before a 
maximum delay of 15 second after the handle position has 
been pushed down.” 

 
3) Time-relative goals fufillment 

Thanks to the SysML/KAOS process, when all the ab-
stract time-relative goals are refined into a set of elementary 
goals, we need to find and express solutions that satisfied 
them. For this purpose, the concept of contribution and the 
concept of impact defined in [6] are used. These concepts are 
summarized below. 

The concept of contribution aims at describing the alter-
native solutions to satisfy elementary non-functional goals. It 
expresses the way by which an elementary non-functional 
goal could be achieved. A contribution is characterized by 
three main properties: contributionType, contributionLevel 
and contributionNature. The property ContributionType 
specifies whether the contribution is positive or negative. A 
positive (or negative) contribution helps (or prevents) to the 
satisfaction of an elementary non-functional goal. The prop-
erty ContributionLevel allows us to associate to the type of 
contribution (positive or negative), a level that can range 
from very high to low. The property ContributionNature 
specifies whether the contribution is explicit or induced. 

Finally, the contribution to the satisfaction of some time-
relative goals may have an impact on functional goals. This 
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purpose is addressed thanks to the concept of impact. In the 
current state of our work, we have observed that the expres-
sion of this concept requires considering some ordering and 
timed constraints on functional goals. We argue that these 
constraints are relevant and should be explicitely specified in 
the goals models. For this purpose, we have introduced two 
additional concepts, which are presented in the next sub-
section. 

 

B. Goal ordering and timed constraint modeling 
The left-hand part of Figure 3 presents the two additional 

concepts: ordering of goal fulfillment and timed constraint. 
 

1) Ordering of goal fulfillment 
We consider that the parent goal is not just a set of 

AND/OR refined sub-goals but could be an ordered se-
quence. For this purpose, we introduce (see Fig. 3) the con-
cept of OrderRelationship that connects goals with each oth-
er. This concept is specialized in two sub-types: Non-
TimedOrder and TimedOrder.  

A NonTimedOrder relationship between two goals means 
that the satisfaction of the latter is not possible unless the 
former has been satisfied. A particular case of the 
NonTimedOrder relationship is the KAOS Milestone 
refinement, which consists of identifying the sub-goals as 
successive steps in time to satisfy the parent goal. A 
TimedOrder relationship between two goals means that satis-
faction of the latter is possible within x time units after the 
former has been satisfied. Fig. 5 shows an example that 
illustrates these concepts. The goal Extend landing gear is 
refined thanks to the milestone refinement into four sub-
goals : Push command to Down, Open the doors, Lock down 
the gears and Close the doors. A timed order relationship 
beetween the first and the fourth goal specifies  that The 
doors must be closed before a maximum delay of 15s after 
the handle command has been pushed down. A timed order 
relationship is graphically represented in the model by an 
annotated link between the two goals. 

 

 
Fig. 5.  An example of ordering of goal fulfillment 

2) Timed Constraint modeling 
Some functional goals can be associated to a timed 

constraint, meaning that their achievement is constrained by 
a quantified delay. This is captured in the meta-model of Fig. 
3 by the concept TimedConstraint. For instance, “the landing 
gears must be loeked down within a maximum delay of 5 
seconds”. A TimedConstraint is caracterized by the property 
timestamp that represents the duration during which the 
constrained goal must be achieved. It can be expressed as 

minumum duration, maximum duration or exactely time. 
Figure 6 presents a goal model that illustrates this concept. 
Timed constrained goals are graphically represented by 
rectangles with pictograms. 

 

 
Fig. 6.  An example of timed constraints 

C. An illustrative example 
This sub-section illustrates with an excerpt of the LGS 

case study, the SysML/KAOS process along with the con-
cepts presented above. 

 

 
Fig. 7.  Excerpt of the LDG functional and non-functional goal models 

According to the first step of SysML/KAOS process, the 
functional and the non-functional goal models are construct-
ed in parallel; the result is shown in Fig. 7.  

The functional goal Retract landing gear is refined 
thanks to the and refinement into four sub-goals : Push 
command to Up, Open the doors, Lock up the gears and 
Close the doors. In the non-functional goal model, the time-
relative goal TimedResponse[Landing Gear] is and refined 
into the following two sub-goals. 

• TimedResponse [Gears] : “Globally the gears must 
occcur (locked up) before a maximum delay of 5 
seconds after the handle position has been pushed 
up”. 

• TimedResponse [Doors] : “Globally, the doors must 
occur (close) before a maximum delay of 10 seconds 
after the gears locked up”. 
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As shown in Fig. 7, the contribution Ensure timed order 
control represents an alternative way to contribute to the 
satisfaction of the two sub-goals. In addition, this 
contribution has an impact on the functional goals Lock up 
the gears and Close the doors. This impact should be 
reflected in the functional goal model that thereby needs 
some changes. The result is a new functional goal model 
that we call integrated functional goal model, presented in 
Fig. 8. The two goals Lock up the gears and Close the 
doors are associated to timed constraints that are 
graphically represented by rectangles with pictograms. The 
fulfillment of three goals (Push command to up, lock up 
the gears and close the doors) are ordered, which is 
graphically represented by the annotated links. Finally the 
And refinement is replaced by a milestone refinement. 

 

 
Fig. 8.  Excerpt of the integrated LDG goal model 

IV. RELATED WORK 
The existing goal-oriented requirements engineering ap-

proaches have addressed interesting issues such as elicitation, 
dependency and prioritization [1][2][3]. A major benefit of 
them is their modeling languages for the specification and 
refinements of goal models. Even though these approaches 
offer a variety of concepts for modeling dependencies among 
goals and tasks, they have paid little attention to time-relative 
issues. Other works [13] investigate possibilities for extend-
ing UML meta-model for the specification of real-time sys-
tems. However, UML is more suitable to the late require-
ments phase than to the early requirements phase.  

More recent works [14][15] propose some extensions to 
KAOS and I* to support the specification of temporal de-
pendencies between goals.  However, these works cannot be 
used to specify real-time requirements, since they focus ex-
clusively on the qualitative aspect of time, they do not allow 
quantitative reasoning about time. The novelty of our work in 
comparison to other approaches is that we consider both 
temporal and timed requirements.  

V. CONCLUSION AND PERSPECTIVES 
In this paper, we have presented the concepts introduced 

in SysML/KAOS meta-model to extend it expressiveness for 
the specification of goal models with time-relative dimen-
sion. This work therefore represents a first step towards this 
objective. While it introduces and demonstrates the concepts, 
a number of works are ongoing. First, we are improving and 

completing the current result. Second, tool support is being 
developed. 
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Integrating Domain Knowledge in Formal
Requirements Engineering

Steve TUENO, Régine LALEAU, Amel MAMMAR, Marc FRAPPIER

Abstract A means of building safe critical systems consists of formally modeling the
requirements formulated by stakeholders and ensuring their consistency with respect
to domain properties. This paper proposes a metamodel for a domain modeling
language, using ontologies, based on OWL and PLIB. The language is part of the
SysML/KAOS requirements engineering method, which also includes a goal modeling
language. The formal semantics of SysML/KAOS models is represented, verified
and validated using the Event-B method. Goal models provide machines and events
of Event-B specifications, while domain models provide the corresponding structure.
Our proposal is illustrated through a case study dealing with an excerpt of a Cycab
localization component specification.

1 Introduction

Computer science is a relatively young science, but it does not prevent it from tack-
ling extreme problems such as the implementation of critical and complex software
systems. Such systems require a careful design and manipulation to ensure that they
do not cause disasters. The literature on the subject is full of examples of disasters
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2 Steve TUENO, Régine LALEAU, Amel MAMMAR, Marc FRAPPIER

that have occurred as a result of the neglect of this principle [17]. The purpose
of the ANR FORMOSE project [4] is to design a formally-grounded, model-based
requirements engineering method, for critical and complex systems, supported by
an open-source environment. Modeling a system with this method requires the rep-
resentation of its requirements as well as the properties of its application domain.
This representation implicitly implies a semantics that must be defined explicitly
through a formal method in order to be verified and validated and thus to prevent
potential failures. The SysML/KAOS goal modeling language [12] focuses on the
modeling of functional and non-functional requirements through a goal hierarchy.
Furthermore, the study reported in [19] is interested in the explicit representation, of
the semantics of SysML/KAOS goal models, with Event-B [1]. This paper comple-
ments the aforementioned studies with the definition of a domain modeling language.
We first synthesize the body of knowledge related to the concrete representation
of the semantics of SysML/KAOS goal models. Then, we analyse existing domain
modeling approaches in requirements engineering and we describe and illustrate our
domain modeling language. The illustration is performed on TACOS [3], a case study
dealing with the specification of a localization software component that uses GPS,
Wi-Fi and sensor technologies for the realtime localization of the Cycab vehicle [25],
an autonomous ground transportation system designed to be robust and completely
independent.

The remainder of this paper is structured as follows: Section 2 briefly describes
Event-B and SysML/KAOS. Section 3 summarises existing work [19, 18] on the
explicit representation of semantics of SysML/KAOS models. Follows a presentation,
in Section 4, of the relevant state of the art on domain modeling in requirements
engineering. Section 4 also defines our expectations regarding the domain modeling
language to be developed and an evaluation of the main ontology modeling languages.
In Section 5, we describe and illustrate our approach to model the domain of a system
specified using the SysML/KAOS method. Finally, Section 6 reports our conclusions
and discusses future work.

2 Background

In this section, we provide a brief overview of the Event-B formal method and of the
SysML/KAOS requirements engineering method.

2.1 Event-B

Event-B [1] is a formal method created by J. R. Abrial for system modeling. It
is used to incrementally build a specification of a system that preserves a set of
properties expressed through invariants. Event-B is mostly used to model closed
systems: the modeling of the system is accompanied by that of its environment and of
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Integrating Domain Knowledge in Formal Requirements Engineering 3

all interactions likely to occur between them. An Event-B model includes static parts
called contexts and dynamic parts called machines. Contexts contain declarations
of abstract and enumerated sets, constants, axioms and theorems. Machines contain
variables, invariants and events. Moreover, a machine can access the definitions of a
context. Each event has a guard and an action. The guard is a condition that must
be satisfied for the event to be triggered and the action describes updates of state
variables. The system specification can be constructed using stepwise refinement, by
refining machines. Proof obligations are defined to prove invariant preservation by
events (invariant has to be true at any system state), event feasibility, convergence
and machine refinement [1]. We use B System [8], a variant of Event-B proposed by
ClearSy, an industrial partner in the FORMOSE project, in its integrated development
environment Atelier B [5]. B System and Event-B share the same semantics but are
syntactically different [28].

2.2 SysML/KAOS

SysML/KAOS [13] is a requirements engineering method based on SysML [14] and
KAOS [17]. SysML allows for the capturing of requirements and the maintaining of
traceability links between those requirements and design deliverables, but it does not
define a precise syntax for requirements specification. The KAOS method includes
five models of which the two main ones are: i) the goal model for the representation
of requirements to be satisfied by the system and of expectations with regards to the
environment through a hierarchy of goals, and ii) the object model which uses the
UML class diagram for the representation of domain vocabulary.

The goal hierarchy is built through a succession of goal refinements using different
operators: AND, OR and MILESTONE. An AND refinement decomposes a goal
into subgoals, and all of them must be achieved to realise the parent goal. An OR
refinement decomposes a goal into subgoals such that the achievement of only one
of them is sufficient for the accomplishment of the parent goal. A MILESTONE
refinement is a variant of the AND refinement which allows the definition of an
achievement order between goals.

Despite of its goal expressiveness, KAOS offers no mechanism to maintain a trace-
ability between requirements and design deliverables, making it difficult to validate
them against the needs formulated. In addition, the expression of domain properties
and constraints is limited by the expressiveness of UML class diagrams, which is
considered insufficient by our industrial partners [4], regarding the complexity and
the criticality of the systems of interest. Therefore, for goal modeling, SysML/KAOS
combines the traceability features provided by SysML with goal expressiveness
provided by KAOS.

A functional goal, under SysML/KAOS, describes the expected behaviour of
the system once a certain condition holds [18] : [if CurrentCondition then] sooner-
or-later TargetCondition. SysML/KAOS allows the definition of a functional goal
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without specifying a CurrentCondition. In this case, the expected behaviour can be
observed from any system state.

Figure 1 represents a goal diagram, of the Cycab System localization component,
focused on the purpose of vehicle localization.

Fig. 1 Excerpt from the localization component goal diagram

To achieve the root goal, which is the localization of the vehicle (LocalizeVehicle),
raw localizations must be captured from vehicle sub components (CaptureRawLocaliza-
tions) which can be GPS (CaptureGPSlocalization) or Wi-Fi (CaptureWIFILocaliza-
tion), be validated using a vehicle sensor (ValidateRawlocalizations) which has
to be either a speed sensor (ValidateUsingSpeedSensor) or an accelerometer
(ValidateUsingAccelerometer) and used to compute the vehicle’s accurate localiza-
tion (ComputeAccuratedlocalization).

3 Expression of the Semantics of SysML/KAOS Models in
Event-B

3.1 Semantics of Goal Models

The formalisation of SysML/KAOS goal models is detailed in [19]. Each refinement
level of a goal diagram gives an Event-B machine. Each goal gives an event. The
semantics of refinements links between goals is explicited using proof obligations
that complement classic proof obligations for invariant preservation and for event
actions feasibility defined in [1]. The other classic Event-B proof obligations are not
relevant for our purpose [19]. Regarding the added proof obligations, they depend on
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the refinement pattern used. For an abstract goal G and two concrete goals G1 and
G2 : 1

• For an AND refinement, the proof obligations are

• G1 Guard⇒ G Guard • G2 Guard⇒ G Guard
• (G1 Post∧G2 Post)⇒ G Post

• For an OR refinement, they are

• G1 Guard⇒ G Guard • G2 Guard⇒ G Guard
• G1 Post⇒ G Post • G2 Post⇒ G Post
• G1 Post⇒¬G2 Guard • G2 Post⇒¬G1 Guard

• For a MILESTONE refinement, they are

• G1 Guard⇒ G Guard • G2 Post⇒ G Post
• �(G1 Post ⇒ ♦G2 Guard) (each system state, corresponding to the post

condition of G 1, must be followed, at least once in the future, by a system
state enabling G 2)

Figure 2 and 3 represent the B System specifications obtained respectively from
the root level of the goal diagram of Fig. 1 and from its first refinement level. It
appears that the structure of the system and the body of events must be manually
completed. The structure of a system is represented within a B System specification
by constants constrained by properties and variables constrained by an invariant.
The objective of our study is to automatically derive this structure from a rigorous
modeling of the domain of the system.

Proof obligations related to the AND refinement link between the root and the first
refinement levels are:

CaptureRawlocalizations Guard⇒ LocalizeVehicle Guard (1)

ValidateRawlocalizations Guard⇒ LocalizeVehicle Guard (2)

ComputeAccuratedlocalization Guard⇒ LocalizeVehicle Guard (3)

CaptureRawlocalizations PostCondition∧ValidateRawlocalizations PostCondition∧
ComputeAccuratedlocalization PostCondition⇒ LocalizeVehicle PostCondition

(4)

1 For an event G, G Guard represents the guards of G and G Post represents the post condition of
its actions.
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SYSTEM
localizationComponent

SETS
CONSTANTS
PROPERTIES
VARIABLES
INVARIANT
INITIALISATION
EVENTS

LocalizeVehicle=
BEGIN

// localization of the vehicle
END

END

Fig. 2 Formalisation of the root level of the goal diagram of Fig. 1

REFINEMENT
localizationComponentRef1

REFINES
localizationComponent

SETS
CONSTANTS
PROPERTIES
VARIABLES
INVARIANT
INITIALISATION
EVENTS

CaptureRawlocalizations=
BEGIN

// capture raw localizations
END;
ValidateRawlocalizations=
BEGIN

// validate raw localizations
END;
ComputeAccuratelocalization =
BEGIN

// compute vehicle accurate localization
END

END

Fig. 3 Formalisation of the first refinement level of the goal diagram of Fig. 1

3.2 Towards an Event-B Expression of the Semantics of Domain
Models

A domain model is a conceptual model capturing the topics related to a specific
problem domain [7]. The main difference between requirements and domain models
is that domain models are independent of stakeholders. They must conform to the
operational context of the system. In [6], a domain description primarily specifies
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semantic entities of the domain intrinsics, semantic entities of support technologies
already “in” the domain, semantic entities of management and organisation domain
entities, syntactic and semantic of domain rules and regulations, syntactic and
semantic of domain scripts and semantic aspects of human domain behaviour. In [24],
Pierra asserts that a domain model can be defined as a set of categories represented
as classes, their properties and their logical relationships. Modeling the domain of a
system consists in giving a representation of the set of concepts that the system will
be called upon to manipulate and the set of properties and constraints associated with
them.

A first attempt at modeling domains within SysML/KAOS is achieved in [18].
Domain modeling involves UML class diagrams, UML object diagrams and ontolo-
gies. The case study presented reveals the use of ontologies for the representation
of domain knowledge; the model obtained is the domain model. Furthermore, UML
object and class diagrams are used to represent the system structure and constraints
in a model known as the structural model which must conforms to the domain model.
A set of rules is proposed for the translation of some domain model elements into
Event-B specifications. However, the approach uses UML diagrams which are graphi-
cal representations that lack a formal semantics [20] and expressivity [21]. Moreover,
the use of several languages is an extra source of complexity.

4 State of the Art on Domain Modeling in Requirements
Engineering

4.1 Existing Domain Modeling Approaches

In KAOS [17], the domain of a system is specified with an object model using
UML class diagrams. An object within this model can be (1) an entity if it exists
independently of the others and does not influence the state of any other object, (2)
an association if it links other objects on which it depends, (3) an agent if it actively
influences the system state by acting on other objects or (4) an event if its existence
is instantaneous, appearing to impulse an update of the system state. This approach,
which is essentially graphic and semi-formal, as argued in [20], is difficult to exploit
in case of critical systems [21].

In [10], Devedzic proposes to model the knowledge of the domain through either
formulae of first-order logic or ontologies. He considers an ontology as a more
structured and extensible representation of domain knowledge.

In [16], domain models are built around concepts and relationships: each defini-
tion of a domain model consists of an assertion linking two instances of Concept
through an instance of Relationship. A categorisation is proposed for concepts and
relationships: a concept can be a function, an object, a constraint, an actor, a platform,
a quality or an ambiguity, while a relationship can be a performative or a symmetry,
reflexivity or transitivity relation. However, the proposed metamodel is missing some
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relevant domain entities such as datasets, predicates to express domain constraints
and relation cardinalities. Moreover, it does not propose modularisation mechanisms
between domain models.

In [21], ontologies are used not only to represent domain knowledge, but also to
model and analyze requirements. The proposed methodology is called knowledge-
based requirements engineering (KBRE) and is mainly used for detection and pro-
cessing of inconsistencies, conflicts and redundancies among requirements. In spite
of the fact that KBRE proposes to model domain knowledge with ontologies, the
proposal focuses on the representation of requirements. A similar approach called
GOORE is proposed in [27].

In [9], Dermeval et al. are interested in a systematic review of the literature re-
lated to usages of ontologies in requirements engineering. They end up describing
ontologies as a standard form of formal representation of concepts within a domain,
as well as of relationships between those concepts.

These approaches suggest that ontologies are relevant for modeling the domains
of systems.

4.2 A Study of Ontology Modeling Languages

An ontology can be defined as a formal model representing concepts that can
be grouped into categories through generalisation/specialisation relations, their
instances, constraints and properties as well as relations existing between them.
Ontology modeling languages can be grouped into two categories: Closed World
Assumption (CWA) for those considering that any fact that cannot be deduced from
what is declared in the ontology is false and Open World Assumption (OWA) for
those considering that any fact can be true unless its falsity can be deduced from
what is declared in the ontology. As [2], we consider that accurate modeling of the
knowledge of engineering domains, to which we are interested, must be done under
the CWA assumption. Indeed, this assumption improves the formal validation of the
consistency of system’s specifications with respect to domain properties. Moreover,
systems of interest to us are so critical that no assertion should be assumed to be true
until consensus is reached on its veracity. Similarly, we also advocate strong typing
[2] because our domain models must be translatable to Event-B specifications.

Several ontology modeling languages exist. The main ones are OWL (Ontology
Web Language) [26], PLIB (Part LIBrary) [23] and F-Logic (Frame Logic) [15].
A summary of the similarities and differences between these languages is presented
through Table 1:

• PLIB, OWL and F-Logic implement modularisation mechanisms between ontolo-
gies. PLIB supports partial import: a class of an ontology A can extend a class of
an ontology B and explicitly specify the properties it wishes to inherit. Moreover,
if nothing is specified, no property will be imported. On the other hand, OWL and
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Table 1 Comparative table of the three main ontology modeling languages

Characteristics OWL PLIB F-Logic
Modularity total partial total
CWA vs OWA OWA CWA CWA
Inheritance multiple simple multiple
Typing weak strong (any element belongs

to one and only one type)

weak

Expressivity strong weak weak
Contextualization of a property (pa-
rameterized attributes)

- + +

Different views for an element - + -
Graphic representation + - -
Domain Knowledge (static vs dynamic) static static static

F-Logic use the total import: when an ontology A refers to an ontology B, all the
elements of B are accessible within A.

• PLIB and F-Logic use the CWA assumption for constraint verification, OWL uses
the OWA assumption.

• OWL and F-Logic implement the multiple inheritance and instantiation. PLIB
implements the simple inheritance and instantiation. On the other hand, with the
is case of relation, a PLIB class can be a case of several other classes, each class
bringing some specific properties.

• PLIB and F-Logic allow the definition of parameterized attributes using context
parameters, which is not possible with OWL.

• PLIB allows the association of several representations or view points with a
concept, which is not possible with neither OWL nor F-Logic.

• The knowledge modeled using OWL, PLIB and F-Logic is always considered
static because there is no distinguishing mechanism. It is for example impossible
to specify that the localization of a vehicle can change dynamically while its brand
cannot.

As stated in [30], all the studied languages emphasize more on modeling static
domain knowledge. None of these languages allows to specify that a knowledge
described must remain unchanged or that it is likely to be updated. Moreover, none
of the languages fully meet our requirements. For instance, OWL assumes the OWA
assumption and PLIB is weakly expressive. The most aligned are OWL and PLIB.

5 Our Approach for Domain Modeling

We have chosen to represent domain knowledge using ontologies since they are
semantically richer and therefore allow a more explicit representation of domain
characteristics. Thus, in this Section, we propose a metamodel, based on that of OWL
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and PLIB while filling their shortcomings, for the representation of the domain of
a system whose requirements are captured using the SysML/KAOS method. Our
language makes the Unique Name Assumption (UNA) [2] : the name of an element
is sufficient to uniquely identify it among all the others within a domain model.
Furthermore, our metamodel is designed to allow the specification of knowledges
that are likely to evolve over time.

5.1 Presentation

We present through Figures 4, 5, 6 and 7 the main part of the metamodel associated
with our domain modeling approach, knowing that yellow elements are those having
an equivalent in the OWL metamodel and that red ones are those that we have either
inserted or customized. Furthermore, some constraints and associations, such as the
parentConcept association, have been extracted from the PLIB metamodel. Due to
space consideration, we will not highlight all the elements and constraints of the
metamodel.

5.1.1 Concepts and Individuals, Data Sets and Data Values

Domain models are built around the notion of Concept which represents a group
of individuals sharing common characteristics (Fig. 4). A concept can be variable
(isVariable=true) when the set of its individuals is likely to be updated through
addition or deletion of individuals. Otherwise, it is constant (isVariable=false). A
concept can be associated with another one, known as its parent concept, through
the parentConcept association, from which it inherits properties. As a result, any
individual of the child concept is also an individual of the parent concept.

An instance of DataSet is used to group instances of DataValue having the same
type (Fig. 5). Default datasets are INTEGER, NATURAL for positive integers, FLOAT,
STRING or BOOL for booleans. The most basic way to build an instance of DataSet
is by listing its elements. This can be done through the DataSet specialization called
EnumeratedDataSet.

5.1.2 Relations and Attributes

Class Relation is used to capture links between concepts (Fig. 6) and Attribute
links between concepts and data sets (Fig. 7). A relation (Fig. 6) or an attribute
(Fig. 7) can be declared variable if the list of maplets related to it is likely to
change over time. Otherwise, it is considered to be constant. The association be-
tween a relation and a concept is characterized by a cardinality: DomainCar-
dinality and RangeCardinality (Fig. 6). Each instance of DomainCardinality
(respectively RangeCardinality) makes it possible to define, for an instance of
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DomainModel

+ name : string

Concept

+ name : string
+ isVariable : boolean

DataSet

Individual

+name DataValue

+ lexicalForm : string

Predicate Body

Head Atom

{:Each atom is 
either a member 

of a rule head 
or a member of 

a rule body}

GluingInvariant{:The abstractDomainModel must be 
a transitive parent of the current 

domain model}

parent

0..1 0..1*

 definedIn 

1
definedIn

1 *
▲ individualOf

*▼ type

1

*▼type

1
▲ valueOf

equalTo

*

*

*

*

differentFrom

*

definedIn

1

0..1
consequent

1

antecedent 

1 1

1..*0..1

0..1

1..*

*

1

abstractDomainModel

0..1

parentConcept

0..1

Fig. 4 First part of the metamodel associated with the domain modeling language

Relation re, the minimum and maximum limits of the number of instances of
Individual, having the domain (respectively range) of re as type, that can be
put in relation with one instance of Individual, having the range (respectively
domain) of re as type. The following constraint is associated with these limits :
(minCardinality≥ 0)∧ (maxCardinality = ∞∨maxCardinality≥ minCardinality),
knowing that if maxCardinality = ∞, then there is no maximum limit. Instances of
RelationMaplet are used to define associations between instances of Individual
through instances of Relation. In an identical manner, instances of AttributeMaplet
are used to define associations between instances of Individual and instances of
DataValue through instances of Attribute.

Optional characteristics can be specified for a relation (Fig. 6) : transitive (is-
Transitive, default false), symmetrical (isSymmetric, default false), asymmetrical
(isASymmetric, default false), reflexive (isReflexive, default false) or irreflexive (isIr-
reflexive, default false). It is said to be transitive (isTransitive=true) when the relation
of an individual x with an individual y which is in turn in relation to z results in the
relation of x and z. It is said to be symmetric when the relation between an individual
x and an individual y results in the relation of y to x. It is said to be asymmetric when
the relation of an individual x with an individual y has the consequence of preventing
a possible relation between y and x, with the assumption that x 6= y. It is said to be
reflexive when every individual of the domain is in relation with itself. It is finally
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DataSet

DataValue

+ lexicalForm : string

DefaultDataSet

CustomDataSet

+ name : string

DataFunction

+ name : string

DataFunctionMaplet

{:Each antecedent (or image) in a 
DataFunctionMaplet must be of 

the same type as the domain (or 
the range) of the associated 

DataFunction}

EnumeratedDataSet 1

▼type *

▲ valueOf

*

1..*

domain 

range 

1..*

*

*
1..* antecedent 

*

1..*
image 

*

0..1

elements

1

*maplets

Fig. 5 Fourth part of the metamodel associated with the domain modeling language

said to be irreflexive when it does not authorize any connection of an individual of
the domain with itself. Moreover, an attribute can be functional (isFunctional, default
true) if it associates to each individual of the domain one and only one data value of
the range.

5.1.3 Functions and Predicates

Class DataFunction (Fig. 5) makes it possible to define operations which allow to
determine data values at the output of a set of processes on some input data values. At
each tuple of data values of the domain, the data function assigns a tuple of data
values of the range, and this assignement cannot be changed dynamically. Example:
We can define an instance of DataFunction named multiply to produce, given
two integers x and y, the individual of INTEGER representing x ∗ y. On the other
side, class Predicate (Fig. 4) is used to represent constraints between different
elements of the domain model as horn clauses: each predicate has a body which
represents its antecedent and a head which represents its consequent, body and head
designating conjunctions of atoms. A typing atom is used to define the type of a
term : ConceptAtom for individuals and DataSetAtom for data values (Fig. 8). An
association atom is used to define associations between terms : RelationshipAtom
for the connection of two terms through an instance of Relation, AttributeAtom for
the connection of two terms through an instance of Attribute and DataFunctionAtom
for the connection of terms through an instance of DataFunction (Fig. 8). For each
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Concept

+ name : string
+ isVariable : boolean

Relation

+ name : string
+ isVariable : boolean
+ <<opt>> isTransitive : boolean
+ <<opt>> isSymmetric : boolean
+ <<opt>> isASymmetric : boolean
+ <<opt>> isReflexive : boolean
+ <<opt>> isIrreflexive : boolean

Individual

+name

RelationMaplet

RangeCardinality

+ minCardinality : integer
+ maxCardinality : integer

DomainCardinality

+ minCardinality : integer
+ maxCardinality : integer

{:Each antecedent in a 
RelationMaplet must be of the 
same type as the domain of 

the associated Relation}

{:Each image in a 
RelationMaplet must be 
of the same type as 

the range of the 
associated Relation}

* 1domain 

range 

1

*

▼ type

1

▲ individualOf

*

mapletOf ▲

*

maplets 
▼

1

0..1

parentRelation

*

*

*
equalTo

*

*differentFrom

antecedent 

1

*

1*

image 

parentConcept

0..1

0..1

Fig. 6 Second part of the metamodel associated with the domain modeling language

case, the types of terms must correspond to the domains/ranges of the considered
link. A comparison atom is used to define comparison relationships between terms
: EqualityAtom for equality and InequalityAtom for difference (Fig. 8). Built in
atoms are some specialized atoms, characterized by identifiers captured through the
AtomType enumeration, and used for the representation of particular constraints
between several terms (Fig. 8). For example, an arithmetic constraint between several
integers.

Predicates can be used to parameterize relations or attributes in order to define
dependent associations. For example, knowing that the resistance of a material
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Concept

+ name : string
+ isVariable : boolean

Attribute

+ name : string
+ isVariable : boolean
+ <<opt>> isFunctional : boolean
+ <<opt>> isTotal : boolean

DataSet

Individual

+name AttributeMaplet

DataValue

+ lexicalForm : string

{:Each antecedent in an 
AttributeMaplet must be 
of the same type as the 

domain of the 
associated Attribute}

{:Each image in an 
AttributeMaplet must be of the 
same type as the range of the 

associated Attribute}

domain

*1

* 1

rang
e

▼ type

▲ individualOf 1

*
▼type

▲ valueOf
1

*

*antecedent1 *

 
image

1

1

mapletOf ▲

*
maplets 
▼

equalTo

*
*

*

*differentFrom

0..1
parentAttribute

*

0..1

parentConcept

*

Fig. 7 Third part of the metamodel associated with the domain modeling language

depends on the temperature of the medium, resistance and temperature attributes are
dependent.

5.1.4 Domain Model and Goal Model

Each domain model is associated with a level of refinement of the SysML/KAOS goal
diagram and is likely to have as its parent, through the parent association, another
domain model (Fig. 4). This allows the child domain model to access and extend
some elements defined in the parent domain model. It should be noted that the parent
domain model must be associated with the refinement level of the SysML/KAOS
goal diagram directly above the refinement level to which the child domain model is
associated.

In order to be able to be used in the setting up of large complex systems, SysM-
L/KAOS allows the refinement of a leaf of a goal diagram in another diagram having
this goal as root. For example, in Figure 9, the goal G3, which is a leaf of the first
goal diagram, is the root of the second one. When this happens, we associate to the
most abstract level of the new goal diagram the domain model associated with the
most concrete level of the previous goal diagram as represented in Figure 9: Domain
Model 2, which is the domain model associated to the most concrete level of the first
diagram, is also the domain model associated to the root of the second one.
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Fig. 8 Fifth part of the metamodel associated with the domain modeling language
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G1

G2 G3

G3

G31 G32

Domain Model 1

Domain Model 2

Domain Model 2

Domain Model 3

parent parent

Fig. 9 Management of the partitioning of a SysML/KAOS goal model

5.2 Illustration

We have identified two graphical syntaxes for the representation of ontologies : the
syntax proposed by OntoGraph [11] and the syntax proposed by OWLGred [29].
The OntoGraph syntax is the one used in [18]. Unfortunately, it does not allow the
representation of some domain model elements such as attributes or cardinalities. For
our illustration, we have thus decided to use the OWLGred syntax. For readability
purposes, we have decided to represent the isVariable property only when it is set to
true and to remove optional characteristics representation.

Figures 10, 11 and 12 represent respectively the domain model associated with the
root level of the goal diagram of Fig. 1 (localization component 0), that associated
with the first refinement level (localization component 1) and that associated with
the second one (localization component 2).

5.2.1 Ontology Associated with the Root Level

v1:

Localization
loc_longitude:Longitude[1]
<<isVariable>>

loc_latitude:Latitude[1]
<<isVariable>>
<<isVariable>>

Vehicle<<instanceOf>> estimated_location 0..1
<<isVariable>>

1

Fig. 10 localization component 0: ontology associated with the root level of the goal diagram of
Fig. 1

In ontology localization component 0 (Fig. 10), a vehicle is modeled as an in-
stance of Concept named Vehicle and its localization is represented through an
instance of Concept named Localization. Since it is possible to dynamically
add or remove vehicle localizations, the property isVariable of Localization is
set to true, which is represented by the stereotype «isVariable». Since the system
is designed to control a single vehicle, it is not possible to dynamically add new
ones. The involved vehicle is thus modeled as an instance of Individual named
v1 having Vehicle as type. Localization is the domain of two attributes :

FORMOSE ANR Project
ANR-14-CE28-0009

29/47



Integrating Domain Knowledge in Formal Requirements Engineering 17

the latitude modeled as an instance of Attribute named loc latitude and the
longitude modeled as an instance of Attribute named loc longitude. Attribute
loc latitude has, as range, an instance of CustomDataSet named Latitude
and loc longitude an instance of CustomDataSet named Longitude. Since
it is possible to dynamically change the localization of a vehicle, the property is-
Variable of loc latitude and that of loc longitude are set to true, which is
represented by the stereotype «isVariable». The association between an individual of
Vehicle and an individual of localization is represented through an instance
of Relation named estimated location. Its associated instance of Domain-
Cardinality has 1 as minCardinality and maxCardinality, and its associated instance
of RangeCardinality has 0 as minCardinality and 1 as maxCardinality.

5.2.2 Ontology Associated with the First Refinement Level

Sensor

SubComponent Vehicle{localization_
component_0}

Localization{localization_
component_0}

validated_locations
{<raw_locations}
0..1<<isVariable>>

*

vehicle_
sensors
1..*

1

vehicle_
subcomponents 11..*

raw_locations 0..1
<<isVariable>>

*

Fig. 11 localization component 1: ontology associated with the first refinement level of the goal
diagram of Fig. 1

Ontology localization component 1 (Fig. 11) has ontology localization component 0
(Fig. 10) as parent and defines new concepts and relations. Each reused ele-
ment is annotated with localization component 0, the parent domain model name.
SubComponent, which is an instance of Concept, is introduced to represent sub
components of a vehicle. Each instance of Individual of type SubComponent
associates the vehicle with a raw location. Sensor, which is also an instance of
Concept is introduced to represent vehicle sensors used to validate the raw locations.
Raw locations which are validated through sensors are called validated locations and
are used to compute the vehicle estimated location. Each vehicle has at least one sub
component and one sensor.
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5.2.3 Ontology Associated with the Second Refinement Level

s1:

g1:

a1:

w1:

Wifi
type("constant")

SpeedSensor Accelerometer

Gps
type("constant")

v1:

Sensor
{localization_

component_1}

SubComponent
{localization_

component_1}
precision:float

<<instanceOf>>

<<instanceOf>>
<<instanceOf>>

<<instanceOf>>

vehicle_sensors {localization_component_1}

vehicle_subcomponents 
{localization_component_1}

vehicle_subcomponents 
{localization_component_1}

vehicle_sensors {localization_component_1}

Fig. 12 localization component 2: ontology associated with the second refinement level of the
goal diagram of Fig. 1

Ontology localization component 2 (Fig. 12) has ontology localization component 1
(Fig. 11) as parent.This third abstraction level represents child concepts of SubComponent
and Sensor. A subcomponent is either a GPS, represented through an instance
of Concept named Gps, or a Wi-Fi, represented through an instance of Concept
named Wifi. A sensor is either an accelerometer, represented through an instance
of Concept named Accelerometer, or a speed sensor, represented through an
instance of Concept named SpeedSensor. Finally, v1 is associated to an instance
of Individual of type Gps named g1 and to an instance of Individual of type Wifi
named w1 through vehicle subcomponents, an instance of Relation intro-
duced in localization component 1. It is also associated to a speed sensor called s1
and to an accelerometer called a1.

The constraint "a GPS is more precise than a Wi-Fi" is translated into an instance
of Predicate represented through formula 5 : If an instance of Term, named x,
having Wifi as its type, has px as its precision and an instance of Term, named y,
having Gps as its type, has py as its precision, then py > px.

greaterThan(?py,?px)←Wifi(?x)∧precision(?x,?px)∧Gps(?y)∧precision(?y,?py)
(5)
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6 Conclusion

In this paper, we have firstly presented the explicitness of SysML/KAOS goal models
semantics in Event-B. Then, we have drawn up the state of the art related to domain
modeling in requirements engineering. After positioning ourselves as to the existing,
we have presented our domain modeling approach consisting in representing domain
characteristics using an ontology modeling language for which a metamodel has
been defined. Our approach has been illustrated through a case study dealing with
the specification of the localization component of a Cycab vehicle.

Work in progress is aimed at developing mechanisms for the explicitness of the
semantics of domain models, constructed using our domain modeling language, in
Event-B. We are also working on integrating the language within the open-source
platform Openflexo [22] which federates the various contributions of FORMOSE
project partners [4].
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Abstract

This paper is related to the generalised/generic version of the SysML/KAOS domain metamodel and on translation rules
between the new domain models and B System specifications.
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1. Background

1.1. Event-B and B System

Event-B [1] is an industrial-strength formal method for system modeling. It is used to incrementally construct a
system specification, using refinement, and to prove useful properties. B System is an Event-B syntactic variant proposed
by ClearSy, an industrial partner in the FORMOSE project [2], and supported by Atelier B [3]. Event-B and B System
have the same semantics defined by proof obligations [1].

Figure 1 is a metamodel of the B System language restricted to concepts that are relevant to us. A B System
specification consists of components (instances of Component). Each component can be either a system or a refinement
and it may define static or dynamic elements. A refinement is a component which refines another one in order to access
the elements defined in it and to reuse them for new constructions. Constants, abstract and enumerated sets, and their
properties, constitute the static part. The dynamic part includes the representation of the system state using variables
constrained through invariants and initialised through initialisation actions. Properties and invariants can be categorised
as instances of LogicFormula. Variables can be involved only in invariants. In our case, it is sufficient to consider that
logic formulas are successions of operands in relation through operators. Thus, an instance of LogicFormula references
its operators (instances of Operator) and its operands that may be instances of Variable, Constant, Set or SetItem.

1.2. SysML/KAOS Goal Modeling

1.2.1. Presentation
SysML/KAOS [4, 5] is a requirements engineering method which combines the traceability provided by SysML [6]

with goal expressiveness provided by KAOS [7]. It allows the representation of requirements to be satisfied by a system
and of expectations with regards to the environment through a hierarchy of goals. The goal hierarchy is built through
a succession of refinements using two main operators: AND and OR. An AND refinement decomposes a goal into
subgoals, and all of them must be achieved to realise the parent goal. An OR refinement decomposes a goal into
subgoals such that the achievement of only one of them is sufficient for the achievement of the parent goal.
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Variable

Invariant

Set

Constant

Property

LogicFormula

AbstractSet EnumeratedSet SetItem

InitialisationAction

{:the constant must be defined in the same 
component than its typing property}

{:the variable must be 
defined in the same 
component than its 

typing invariant}
Operator

{:ordered}

{:ordered}

{:ordered}

{:ordered}

{:ordered}

{:ordered}

{:ordered}

Component

SystemRefinement

▲ involves

1..*

1..*

1 1

◀ initialises

1

▼ typing
0..1

*◀ definedIn

1

1 *

◀ definedIn

◀ involves*

*

*1 ◀ definedIn

*

1..*

▲ isInvolvedIn

0..1

1▲ typing

1

◀ definedIn

* involves
*

*

◀ definedIn

*1

▶︎ uses 1..*
*

*

*

▼ involves

◀ itemOf

1..*1

1..*

▼ uses

*

0..1

1

▶︎ refines

Figure 1: Metamodel of the B System specification language

For this work, the case study focuses on a communication protocol called SATURN proposed by ClearSy. SATURN
relies on exchanges of communication frames between different agents connected through a bus. This case study is
restricted to input/output agents. Input agents provide boolean data. Each input data undergoes a boolean transformation
and the result is made available to output agents.

Goal: Computation
true LEADSTO out_l = FB(in_l)

Goal: Put
true LEADSTO out_r = out_l

AND

Goal: Get
true LEADSTO s_in_l = s_in_r

Goal: Computation
true LEADSTO s_out_l = VFB(s_in_l)

Goal: Put
true LEADSTO s_out_r = s_out_l

Goal: Saturn
true LEADSTO out = FB(in)

Goal: Get
true LEADSTO in_l = in_r

Goal: Control
true  LEADSTO out = FB(in_l)

AND

1

2

3

4

Diagramme de Buts (1)

Figure 2: Excerpt from SATURN system goal diagram

Figure 2 is an excerpt from the SysML/KAOS goal diagram representing the functional goals of SATURN. The main
purpose of the system is to transform data provided by input agents (in) and make the result (out=FB(in)) available to

2
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output agents. The purpose gives the root goal Saturn of the goal diagram of Fig 2. However, goal Saturn disregards
input reads and result writes. The AND operator is used just after to introduce, at the first refinement level, a goal Get for
input data acquisition from input agents. Term in_r designates the data available within input agents and term in_l
designates the input data used to compute the output data. Similarly, the second refinement level introduces a goal Put
to make the result out_l available to output agents (out_r represents the data received by output agents). The third
refinement level refines goals defined within the second refinement level to take into account multiplicities of input and
output agents. Thus, input data acquisition generates a boolean array s_in_l instead of in_l, computation becomes a
transformation between arrays s_out_l = VFB(s_in_l) and result delivery transfers the content of array s_out_l to
output agents.

In addition, SysML/KAOS includes a domain modeling language which combines the expressiveness of OWL [8] and
the constraints of PLIB [9].

1.3. SysML/KAOS Domain Modeling

1.3.1. Presentation
Domain models in SysML/KAOS are represented using ontologies. These ontologies are expressed using the

SysML/KAOS domain modeling language [10, 11], built based on OWL [8] and PLIB [9], two well-known and
complementary ontology modeling formalisms.

DomainModel

+ name : string

Concept

+ name : string
+ isVariable : boolean

Relation

+ name : string
+ isVariable : boolean
+ <<opt>> isTransitive : boolean
+ <<opt>> isSymmetric : boolean
+ <<opt>> isASymmetric : boolean
+ <<opt>> isReflexive : boolean
+ <<opt>> isIrreflexive : boolean

Attribute

+ name : string
+ isVariable : boolean
+ <<opt>> isFunctional : boolean
+ <<opt>> isTotal : boolean

DataSet

Individual

+name AttributeMaplet

DataValue

+ lexicalForm : string

RelationMaplet

DefaultDataSet

CustomDataSet

+ name : string

Predicate

RangeCardinality

+ minCardinality : integer
+ maxCardinality : integer

DomainCardinality

+ minCardinality : integer
+ maxCardinality : integer

Body

Head Atom

{:Each antecedent in a 
RelationMaplet must be of the 
same type as the domain of 

the associated Relation}

{:Each image in a 
RelationMaplet must be 

of the same type as 
the range of the 

associated Relation} {:Each antecedent in an 
AttributeMaplet must be 
of the same type as the 

domain of the 
associated Attribute}

{:Each image in an 
AttributeMaplet must be of the 
same type as the range of the 

associated Attribute}

{:Each atom is 
either a member 

of a rule head 
or a member of 

a rule body}

EnumeratedDataSet

GluingInvariant

{:The 
abstractDomainMod

el must be a 
transitive parent of 
the current domain 

model}

parent

0..1

0..1

*

1

definedIn ▶︎

*

1definedIn ▲*

 definedIn ▶︎

1
◀ definedIn1

*

*

1

◀ definedIn

abstractDomainModel ▼

*

1

0..1

0..1

parentConcept

*
domain ▶︎ 1

range ▶︎

1

*

1 *

◀ domain

*

▲ individualOf

▼ type

1

1

*

mapletOf ▲

maplets ▼

1

range ▶︎

*

1

*

mapletOf ▲

maplets ▼

▲ valueOf

▼type

1

*

◀ antecedent *1

*

antecedent ▶︎ 1

image ▶︎

* 1

*

 image ▶︎ 

1
0..11..*

◀ elements

1 1

antecedent ▶︎

1

0..1
consequent ▲

0..1

1..*

1..*0..1

◀ definedWith

*

0..1

Figure 3: Excerpt from the metamodel associated with the SysML/KAOS domain modeling language

Figure 3 is an excerpt from the metamodel associated with the SysML/KAOS domain modeling language. Each
domain model is associated with a level of refinement of the SysML/KAOS goal diagram and is likely to have as its
parent, through the parent association, another domain model. Concepts (instances of Concept) designate collections of
individuals (instances of Individual) with common properties. A concept can be declared variable (isVariable=TRUE)
when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is considered to be
constant (isVariable=FALSE).

Relations (instances of Relation) are used to capture links between concepts, and attributes (instances of Attribute)
capture links between concepts and data sets (instances of DataSet). Relation maplets (instances of RelationMaplet)
capture associations between individuals through relations and attribute maplets (instances of AttributeMaplet) play the
same role for attributes.A relation or an attribute can be declared variable if the list of maplets related to it is likely
to change over time. Otherwise, it is considered to be constant. The variability of an association (relation, attribute)
is related to the ability to add or remove maplets. Each domain cardinality (instance of DomainCardinality) makes it
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possible to define, for a relation re, the minimum and maximum limits of the number of individuals of the domain of
re that can be put in relation with one individual of the range of re. In addition, the range cardinality (instance of
RangeCardinality)) of re is used to define similar bounds for the number of individuals of the range of re.

Predicates (instances of Predicate) are used to represent constraints between different elements of the domain model
in the form of horn clauses: each predicate has a body which represents its antecedent and a head which represents
its consequent, body and head designating conjunctions of atoms. A data set can be declared abstractly, as a custom
data set (instance of CustomDataSet), and defined with a predicate. Gluing invariants (instances of GluingInvariant),
specialisations of predicates, are used to represent links between data defined within a domain model and those appearing
in more abstract domain models, transitively linked to it through the parent association. They capture relationships
between abstract and concrete data during refinement and are used to discharge proof obligations.

1.3.2. Illustration and Shortcomings

T_OUT
isVariable="true"

in:T_IN
T_IN

isVariable="true"

out:T_OUT

FB

*

isVariable=true

1

<<instanceOf>>

<<instanceOf>>

Figure 4: Saturn_1: ontology associated with the root level of the goal diagram of Fig. 2

Figure 4 is an attempt to represent the domain model associated with the root level of the goal diagram of Fig. 2
using the SysML/KAOS domain modeling language previously described. It is illustrated using the syntax proposed by
OWLGred [12] and, for readability purposes, we have decided to hide the representation of optional characteristics. It
should be noted that the individualOf association is illustrated, through OWLGred, as a stereotyped link with the tag
«instanceOf».

The type of input data is modeled as a concept T_IN defining an individual in which represents the input data.
Similarly, the type of output data is modeled as a concept T_OUT defining an individual out which represents the output
data. The computation function FB is modeled as a functional relation from T_IN to T_OUT.

The first difficulty we encountered is related to the changeability of domain entities. In fact, the states of input and
output data change dynamically. In domain model of Fig. 4, a workaround consisted in considering that concepts T_IN
and T_OUT and relation FB are variables. Thus, going from a system state where out1 = FB(in1) to a system state
where out2 = FB(in2) is feasible and goes through: (1) withdrawal of maplet in1 7→ out1 from FB; (2) withdrawal
of individual in1 from T_IN; (3) withdrawal of individual out1 from T_OUT; (4) addition of individual in2 in T_IN; (5)
addition of individual out2 in T_OUT; and (6) addition of maplet in2 7→ out2 in FB. However, this representation does
not conform to SATURN’s design. Indeed, from a conceptual point of view: (1) the input data type must be constant
(corresponds to the set of n-tuples of Booleans1); (2) the output data type must be constant (corresponds to the set of
m-tuples of Booleans2); (3) the computation function FB is hard-coded and is therefore constant. What should change
are individuals representing the input and output data. It is thus necessary to be able to model variable individuals:
individual which can dynamically take any value in a given concept. A similar need appears for relations with relation
maplets, attributes with attribute maplets and data sets with data values.

Another difficulty has been encountered related to multiplicities of input and output agents (domain model associated
with the third refinement level of the goal diagram of Fig. 2). Indeed, the array that represents input data needs to
be modeled by a relation, ditto for the array that represents output data. Thus, the computation function needs to be

1When considering n input agents
2When considering m output agents
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modeled by a relation for which the domain and the range are relations, which is impossible with the current definition
of the SysML/KAOS domain modeling language.

The SATURN case study also revealed the need to be able to:

• define domain and range cardinalities for attributes;

• define a named maplet (instance of RelationMaplet or AttributeMaplet) with or without antecedent and image;

• define an initial value for a variable individual, maplet or data value;

• define associations between data sets and maplets between data values;

• refine a concept with an association or a data set3;

• refine an individual with a maplet or a data value.

We have therefore identified the need to build a generalisation of the metamodel of Fig. 3 which enriches the
expressiveness of the SysML/KAOS domain modeling language while preserving the fundamental constraints identified
in [10, 11]. A major contribution of this new metamodel is that it federates notions of concept, data set, attribute and
relation as well as notions of individual, maplet and data value that have always been considered distinct by ontology
modeling languages. Additional constraints are defined to preserve the formal semantics of the language and to ensure
unambiguous transformation of any domain model to a B System specification.

2. The New SysML/KAOS Domain Modeling Language

2.1. Presentation
Figure 5 is an excerpt from the updated SysML/KAOS domain metamodel.

2.1.1. Description
Domain models are also associated with levels of refinement of the SysML/KAOS goal model. Concepts (instances

of Concept) designate collections of individuals (instances of Individual) with common properties. A concept can be
declared variable (isVariable=TRUE) when the set of its individuals can be updated by adding or deleting individuals.
Otherwise, it is considered to be constant (isVariable=FALSE). In addition, a concept can be an enumeration (isEnumer-
ation=TRUE) if all its individuals are defined within the domain model. It should be noted that an individual can be
variable (isVariable=TRUE) if it is introduced to represent a system state variable: it can represent different individuals
at different system states. Otherwise, it is constant (isVariable=FALSE).

Associations (instances of Association) are concepts used to capture links between concepts. Maplet individuals
(instances of MapletIndividual) capture associations between individuals through associations. Each named maplet
individual can reference an antecedent and an image. When the maplet individual is unnamed, the antecedent and the
image must be specified. The variability of an association is related to the ability to add or remove maplets. Each
domain cardinality (instance of DomainCardinality) makes it possible to define, for an association re, the minimum and
maximum limits of the number of individuals of the domain of re that can be put in relation with one individual of the
range of re. In addition, the range cardinality (instance of RangeCardinality)) of re is used to define similar bounds
for the number of individuals of the range of re.

Class LogicalFormula replaces class Predicate of the metamodel of Fig. 3 to represent constraints between domain
model elements.

2.1.2. Additional Constraints
This section defines the constraints that are required to preserve the formal semantics of the domain modeling

language and to ensure an unambiguous transformation of any domain model to a B System specification. The constraints
are defined using the B syntax [1].

• x ∈ Concept \ Association
⇒ Individual_individualOf_Concept−1[{x}] ∩MapletIndividual = ∅: if concept x is not an association, then no
individual of x can be a maplet individual.

3An entity ec, defined in a concrete domain model, refines the entity ea, defined in an abstract domain model, if it can be deduced that ec = ea
from domain model definitions
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DomainModel

+ name : string

Concept

+ name : string
+ isVariable : boolean
+ isEnumeration : boolean

Individual

+ name : string [0..1]
+ isVariable : boolean

LogicalFormula

+ assertion : string

GluingInvariant

Association

+ <<opt>> isTransitive : boolean
+ <<opt>> isSysmmetric : boolean
+ <<opt>> isASymmetric : boolean
+ <<opt>> isReflexive : boolean
+ <<opt>> isIrreflexive : boolean

MapletIndividual

DomainCardinality

+ minCardinality : integer
+ maxCardinality : integer

RangeCardinality

+ minCardinality : integer
+ maxCardinality : integer

{:x:Concept\Association=>individu
alOf~[{x}]/\MapletIndividual={}}

QuantVariable

+ name : string

DefaultDataType

DefinedConcept

0..1

parentDomainModel 0..1

1▲ 
definedIn 

*

▲ 
parentConcept 

*

0..1

*1 ◀ individualOf *

▲ 
initialValue 

0..1

*1 ◀ definedIn

1

*

▲ 
domain 

*

1
▲ 

range 

*

0..1

▲ 
image 

0..1

*

▲ 
antecedent 

*

◀ individualOf

1

involves  ▶︎ *

*
◀ involves

*
*

1

▲ 
involves

*

*

▲ 
definedWith

1..*

1

*

◀ definedIn

Figure 5: Excerpt from the updated SysML/KAOS domain metamodel

• x ∈ MapletIndividual ∩ dom(MapletIndividual_antecedent_Individual)
⇒ MapletIndividual_antecedent_Individual(x) ∈ Association_domain_Concept(Individual_individualOf_Concept(x)):
if maplet individual x has an antecedent, then the antecedent is an individual of the domain of its association.

• x ∈ MapletIndividual ∩ dom(MapletIndividual_image_Individual)
⇒ MapletIndividual_image_Individual(x) ∈ Association_range_Concept(Individual_individualOf_Concept(x)):
if maplet individual x has an image, then the image is an individual of the range of its association.

• ind ∈ Individual \ MapletIndividual ⇒ ind ∈ dom(Individual_name): every individual which is not a maplet
individual must be named.

• ind ∈ Individual \ dom(Individual_name) ⇒ Individual_isVariable(ind) = FALS E: every unnamed individual
must be constant.

• ind ∈ MapletIndividual∩dom(MapletIndividual_antecedent_Individual)∩dom(MapletIndividual_image_Individual)
⇒ (MapletIndividual_antecedent_Individual(ind) ∈ dom(Individual_name)∧MapletIndividual_image_Individual(ind) ∈
dom(Individual_name)): antecedents and images of maplet individuals must be named.

• ind ∈ MapletIndividual \ dom(Individual_name)
⇒ ind ∈ dom(MapletIndividual_antecedent_Individual) ∩ dom(MapletIndividual_image_Individual): every
unnamed maplet individual must have an antecedent and an image.
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• x ∈ Concept \ (Association ∪ DefinedConcept ∪ dom(Concept_parent_Concept))
⇒ Concept_isVariable(x) = FALS E: every abstract concept (that has no parent concept) that is not an association
must be constant.

• x ∈ Concept ∧ Concept_isEnumeration(x) = TRUE ⇒ Concept_isVariable(x) = FALS E: every concept that
is an enumeration must be constant.

• (ind ∈ MapletIndividual∩dom(MapletIndividual_antecedent_Individual)∩dom(MapletIndividual_image_Individual)
∧ Individual_isVariable(ind) = FALS E)
⇒ (Individual_isVariable(MapletIndividual_antecedent_Individual(ind)) = FALS E
∧ Individual_isVariable(MapletIndividual_image_Individual(ind)) = FALS E): antecedents and images of con-
stant maplet individuals must be constant.

• (x ∈ Association ∧ Concept_isVariable(x) = FALS E)
⇒ (Concept_isVariable(Association_domain_Concept(x)) = FALS E
∧ Concept_isVariable(Association_range_Concept(x)) = FALS E): domains and ranges of constant associa-
tions must be constant.

2.2. Illustration

Figure 6: Saturn_1: ontology associated with the root level of the goal diagram of Fig. 2

Figures 6, 7, 8, 9 represent domain models associated with refinement levels 0 (root level) .. 3 of the goal diagram of
Fig. 2 using the updated SysML/KAOS domain modeling language. They are illustrated using the syntax proposed by
the SysML/KAOS Domain Modeling tool [13]4 and, for readability purposes, we have decided to hide the representation
of optional characteristics.

4The tool has been implemented on top of Jetbrains MPS [14] and PlantUML [15] to provide a proof of concept of the SysML/KAOS Domain
Modeling Language.
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Figure 7: Saturn_2: ontology associated with the first refinement level of the goal diagram of Fig. 2

Figure 8: Saturn_3: ontology associated with the second refinement level of the goal diagram of Fig. 2

In domain model Saturn_1 (Fig. 6), the type of input data is modeled as a constant concept T_IN (instance of class
Concept of Fig. 5) defining a variable individual in (instance of class Individual of Fig. 5) which represents the input
data. Similarly, the type of output data is modeled as a constant concept T_OUT defining a variable individual out which
represents the output data. Finally, the computation function FB is modeled as a functional association (instance of class
Association of Fig. 5) from T_IN to T_OUT. Constant individuals in0 and out0 represent respectively the initial value
of in and that of out.

In domain model Saturn_2 (Fig. 7) which refines Saturn_1, individual in is refined by an individual named
in_l (in_l = in) and a new variable individual named in_r is defined to represent the acquired input data. Similarly,
in domain model Saturn_3 (domain model associated with refinement level 2 of the goal diagram of Fig. 2), out is

8
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Figure 9: Saturn_4: ontology associated with the third refinement level of the goal diagram of Fig. 2

refined by out_l (out_l = out) and individual out_r is added.
In domain model Saturn_4 (Fig. 9) which refines Saturn_3, two concepts are defined: MI which represents the

set of input agents and MO which represents the set of output agents. Concept agents_in (respectively agents_out)
is a subconcept of MI (respectively MO) which represents the set of input (respectively output) agents that are active.
Concept VIN, defined as the set of total functions from agents_in to BOOL (VIN = agents_in −→ BOOL where
BOOL = {TRUE, FALS E}), represents the type of input data which are now arrays. Similarly, concept VOUT (VOUT =

agents_out −→ BOOL) represents the type of output data. Individuals in_l, in_r, out_l and out_r are refined
respectively by individuals s_in_l, s_in_r, s_out_l and s_out_r using total injective associations vec_to_in
from VIN to T_IN and vec_to_out from VOUT to T_OUT: in_l = vec_to_in(s_in_l), in_r = vec_to_in(s_in_r), out_l =

vec_to_out(s_out_l), out_r = vec_to_out(s_out_r). Finally, the computation function is modeled as a functional
association named VBF from VIN to VOUT: VBF = vec_to_in; FB; vec_to_out−1 (operator ; is the association composition
operator used in logical formula assertions).

3. Updates in Translation Rules from Domain Models to B System Specifications

In the following, we describe a set of rules that allow to obtain a B System specification from domain models that
conform to the updated SysML/KAOS domain modeling language.

Table 1 gives the translation rules. It should be noted that o_x designates the result of the translation of x. In addition,
when used, qualifier abstract denotes "without parent". The rules have been implemented within the SysML/KAOS
Domain Modeling tool [13] built on top of Jetbrains MPS [14] and PlantUML [15] to provide a proof of concept of
the SysML/KAOS Domain Modeling Language. Rules 3, 4, 6..8, and 12..16 have undergone significant updates to the
previously defined translation rules [16].

Table 1: The translation rules

Domain Model B System
Translation Of Element Constraint Element Constraint

1 Abstract domain
model

DM DM ∈ DomainModel
DM /∈ dom(DomainModel_parent_DomainModel)

o_DM o_DM ∈ System

2 Domain model with
parent

DM
PDM

{DM, PDM} ⊆ DomainModel
PDM = DomainModel_parent_DomainModel(DM)
o_PDM ∈ Component

o_DM o_DM ∈ Refinement
Refinement_refines_Component(o_DM) = o_PDM

9
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3 Abstract concept
that is not an enu-
meration

CO CO ∈ Concept \ (Association ∪ DefinedConcept ∪
DefaultDataType)

CO /∈ dom(Concept_parent_Concept)

Concept_isEnumeration(CO) = FALS E

o_CO o_CO ∈ AbstractSet

4 Abstract concept
that is an enumera-
tion

CO
(I j) j∈1..n

CO ∈ Concept \ (Association ∪ DefinedConcept ∪
DefaultDataType)

CO /∈ dom(Concept_parent_Concept)

Concept_isEnumeration(CO) = TRUE

∀ j ∈ 1..n, I j ∈ Individual
∧ Individual_individualOf_Concept(I j) = CO
∧ Individual_isVariable(I j) = FALS E

o_CO
(o_I j) j∈1..n

o_CO ∈ EnumeratedSet

∀ j ∈ 1..n, o_I j ∈ SetItem
∧ SetItem_itemOf_EnumeratedSet(o_I j) = o_CO

5 Concept with con-
stant parent

CO PCO {CO, PCO} ⊆ Concept
Concept_parent_Concept(CO) = PCO
o_PCO ∈ Set ∪ Constant

o_CO IF Concept_isVariable(CO) = FALS E
THEN o_CO ∈ Constant
ELSE o_CO ∈ Variable
LogicFormula: o_CO ⊆ o_PCO

6 Constant concept
with variable parent

CO PCO
PPCO

{CO, PCO, PPCO} ⊆ Concept
Concept_isVariable(CO) = FALS E
Concept_parent_Concept(CO) = PCO
o_PCO ∈ Variable
PPCO ∈ (closure1(Concept_parent_Concept))[{PCO}]5

o_PPCO ∈ Set ∪ Constant

o_CO o_CO ∈ Constant
Property: o_CO ⊆ o_PPCO
Invariant: o_CO ⊆ o_PCO

7 Variable concept
with variable parent

CO PCO {CO, PCO} ⊆ Concept
Concept_isVariable(CO) = TRUE
Concept_parent_Concept(CO) = PCO
o_PCO ∈ Variable

o_CO o_CO ∈ Variable
Invariant: o_CO ⊆ o_PCO

8 Enumerated concept
with parent

CO
(I j) j∈1..n

CO ∈ dom(Concept_parent_Concept)

Concept_isEnumeration(CO) = TRUE

∀ j ∈ 1..n, I j ∈ Individual
∧ Individual_individualOf_Concept(I j) = CO
∧ Individual_isVariable(I j) = FALS E

o_CO ∈ Constant6

∀ j ∈ 1..n, o_I j ∈ o_CO

Property: o_CO = (o_I j) j∈1..n

(9) Association or
defined concept
without parent

CO CO ∈ (DefinedConcept ∪ Association)
CO /∈ dom(Concept_parent_Concept)7

To ensure that each variable or constant is typed, this rule
has to be combined with either rule 10, for associations, or
with a translation of the defining logical formula (contained
in definedWith), for defined concepts.

o_CO IF Concept_isVariable(CO) = FALS E
THEN o_CO ∈ Constant
ELSE o_CO ∈ Variable

10 Association AS CO1
CO2 da
di ra ri

{CO1,CO2} ⊆ Concept
AS ∈ Association
CO1 = Association_domain_Concept(AS )
CO2 = Association_range_Concept(AS )
Association_DomainCardinality_maxCardinality(AS ) = da
Association_DomainCardinality_minCardinality(AS ) = di
Association_RangeCardinality_maxCardinality(AS ) = ra
Association_RangeCardinality_minCardinality(AS ) = ri
o_AS ∈ Constant ∪ Variable
{o_CO1, o_CO2} ⊆ (Set ∪ Constant ∪ Variable)

T_o_AS IF Concept_isVariable(CO1) = FALS E
∧ Concept_isVariable(CO2) = FALS E
THEN T_o_AS ∈ Constant
ELSE T_o_AS ∈ Variable

IF {ra, ri, da, di} = {1}
THEN LogicFormula: T_o_AS = o_CO1 �� o_CO2
ELSE IF {ra, ri, da} = {1}
THEN LogicFormula: T_o_AS = o_CO1 � o_CO2
ELSE IF {ra, ri, di} = {1}
THEN LogicFormula: T_o_AS = o_CO1 � o_CO2
ELSE IF {ra, di} = {1}
THEN LogicFormula: T_o_AS = o_CO1 7� o_CO2
ELSE IF {ra, da} = {1}
THEN LogicFormula: T_o_AS = o_CO1 7� o_CO2
ELSE IF {ra, ri} = {1}
THEN LogicFormula: T_o_AS = o_CO1 −→ o_CO2
ELSE IF ra = 1
THEN LogicFormula: T_o_AS = o_CO1 7→ o_CO2
ELSE

LogicFormula: T_o_AS = o_CO1↔ o_CO2
∧∀x.(x ∈ CO2⇒ card(o_RE−1[{x}]) ∈ di..da)
∧∀x.(x ∈ CO1⇒ card(o_RE[{x}]) ∈ ri..ra)

LogicFormula: o_AS ∈ T_o_AS

5closure1(Concept_parent_Concept) designates the transitive closure of relation Concept_parent_Concept
6Every concrete enumeration is a constant
7If CO has a parent concept, o_CO must be introduced by rule 5. It is therefore necessary to ensure that this is not the case.
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11 Individual of a con-
stant concept that is
not an abstract enu-
meration

Ind CO Ind ∈ Individual \MapletIndividual
CO = Individual_individualOf_Concept(Ind)
o_CO ∈ AbstractSet ∪ Constant

o_Ind IF Individual_isVariable(Ind) = TRUE
THEN o_Ind ∈ Variable
ELSE o_Ind ∈ Constant
LogicFormula: o_Ind ∈ o_CO

12 Constant individual
of a variable concept

Ind CO
PPCO

Ind ∈ Individual \MapletIndividual
Individual_isVariable(Ind) = FALS E
CO = Individual_individualOf_Concept(Ind)
o_CO ∈ Variable
PPCO ∈ Concept
PPCO ∈ (closure1(Concept_parent_Concept))[{CO}]
o_PPCO ∈ Set ∪ Constant

o_Ind o_Ind ∈ Constant
Property: o_Ind ∈ o_PPCO
Invariant: o_Ind ∈ o_CO

13 Variable individual
of a variable concept

Ind CO Ind ∈ Individual \MapletIndividual
Individual_isVariable(Ind) = TRUE
CO = Individual_individualOf_Concept(Ind)
o_CO ∈ Variable

o_Ind o_Ind ∈ Variable
Invariant: o_Ind ∈ o_CO

14 Variable individ-
ual of a concept
that is an abstract
enumeration

Ind CO Ind ∈ Individual \MapletIndividual
Individual_isVariable(Ind) = TRUE
CO = Individual_individualOf_Concept(Ind)
Concept_isEnumeration(CO) = TRUE
CO /∈ dom(Concept_parent_Concept)
o_CO ∈ EnumeratedSet

o_Ind o_Ind ∈ Variable
Invariant: o_Ind ∈ o_CO

15 Maplet individual Ind AS
Ant Im
PPCO1
PPCO2

Ind ∈ MapletIndividual

AS = Individual_individualOf_Concept(Ind)8

o_AS ∈ Constant ∪ Variable

Ind ∈ dom(MapletIndividual_antecedent_Individual)
⇒ Ant = MapletIndividual_antecedent_Individual(Ind)

o_Ant ∈ Constant ∪ Variable

Ind ∈ dom(MapletIndividual_image_Individual)
⇒ Im = MapletIndividual_image_Individual(Ind)

o_Im ∈ Constant ∪ Variable

{PPCO1, PPCO2} ⊆ Concept

PPCO1 ∈ (closure1(Concept_parent_
Concept))[{Association_domain_Concept(AS )}]

PPCO2 ∈ (closure1(Concept_parent_
Concept))[{MapletIndividual_range_Individual(AS )}]

{o_PPCO1, o_PPCO2} ⊆ Set ∪ Constant

o_Ind IF Ind ∈ dom(Individual_name)
THEN

IF Individual_isVariable(Ind) = TRUE
THEN

o_Ind ∈ Variable
Invariant: o_Ind ∈ o_AS
IF Ind ∈ dom(MapletIndividual_antecedent_Individual)
∩ dom(MapletIndividual_image_Individual)

THEN Invariant: o_Ind = o_Ant 7→ o_Im
ELSE

o_Ind ∈ Constant
IF o_AS ∈ Constant
THEN Property: o_Ind ∈ o_AS
ELSE
Property: o_Ind ∈ o_PPCO1↔ o_PPCO2
Invariant: o_Ind ∈ o_AS

IF Ind ∈ dom(MapletIndividual_antecedent_Individual)
∩ dom(MapletIndividual_image_Individual)

THEN Property: o_Ind = o_Ant 7→ o_Im
ELSE LogicFormula: o_Ant 7→ o_Im ∈ o_AS 9

16 Variable individual
initialisation

Ind Init
CO
Init_ant
Init_im

Ind ∈ Individual ∩ dom(Individual_name)

Individual_isVariable(Ind) = TRUE

o_Ind ∈ Variable

CO = Individual_individualOf_Concept(Ind)

o_CO ∈ Set ∪ Constant ∪ Variable

Ind /∈ dom(Individual_initialValue_individual)
∨ (Individual_initialValue_individual(Ind) = Init
∧ ((Init /∈ dom(Individual_name)
∧ Init_ant = MapletIndividual_antecedent_Individual(Init)
∧ Init_im = MapletIndividual_image_Individual(Init)
∧ {Init_ant, Init_im} ⊆ Constant ∪ Variable)
∨ o_Init ∈ Constant ∪ Variable))

IF Ind /∈ dom(Individual_initialValue_individual)
THEN o_Ind :: o_CO
ELSE

IF Init /∈ dom(Individual_name)
THEN Initialisation: o_Ind := o_Ant 7→ o_Im
ELSE Initialisation: o_Ind := o_Init

17 Variable concept ini-
tialisation

CO
(I j) j∈1..n

CO ∈ dom(Concept)

Concept_isVariable(CO) = TRUE

∀ j ∈ 1..n, I j ∈ Individual
∧ Individual_individualOf_Concept(I j) = CO
∧ Individual_isVariable(I j) = FALS E

o_CO ∈ Variable

∀ j ∈ 1..n, o_I j ∈ o_CO

Initialisation: o_CO := (o_I j) j∈1..n10

8AS must be an association
9Following the variability status of o_AS, this predicate can be a property or an invariant

10If ∃ j ∈ 1..n.I j /∈ dom(Individual_name) then o_I j must be replaced by o_I j_Ant 7→ o_I j_Im as in the previous rule
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18 Association transitiv-
ity

AS AS ∈ Association
Association_isTransitive(AS ) = TRUE
o_AS ∈ Constant ∪ Variable

LogicFormula: (o_AS ; o_AS ) ⊆ o_AS

19 Association symme-
try

AS AS ∈ Association
Association_isSymmetric(AS ) = TRUE
o_AS ∈ Constant ∪ Variable

LogicFormula: o_AS −1 = o_AS

20 Association asymme-
try

AS CO AS ∈ Association
Association_isSymmetric(AS ) = TRUE
o_AS ∈ Constant ∪ Variable
Association_domain_Concept(AS ) = CO
o_CO ∈ Set ∪ Constant ∪ Variable

LogicFormula: (o_AS −1 ∩ o_AS ) ⊆ id(o_CO)

21 Association reflexiv-
ity

AS CO AS ∈ Association
Association_isReflexive(AS ) = TRUE
o_AS ∈ Constant ∪ Variable
Association_domain_Concept(AS ) = CO
o_CO ∈ Set ∪ Constant ∪ Variable

LogicFormula: id(o_CO) ⊆ o_AS

22 Association irreflex-
ivity

AS CO AS ∈ Association
Association_isIrreflexive(AS ) = TRUE
o_AS ∈ Constant ∪ Variable
Association_domain_Concept(AS ) = CO
o_CO ∈ Set ∪ Constant ∪ Variable

LogicFormula: id(o_CO) ∩ o_AS = ∅

Each logical formula is translated with the definition of a B System logic formula corresponding to its assertion.
Since both languages use first-order logic notations, the translation is limited to a syntactic rewriting.

4. Updates in Back Propagation Rules from B System Specifications to Domain Models

We choose to support only the most repetitive additions that can be performed within the formal specification, the
domain model remaining the one to be updated in case of any major changes such as the addition or the deletion of a
refinement level. Table 2 summarises the most relevant back propagation rules. Each rule defines its inputs (elements
added to the B System specification) and constraints that each input must fulfill. It also defines its outputs (elements
introduced within domain models as a result of the application of the rule) and their respective constraints. It should be
noted that for an element b_x of the B System specification, o_x designates the domain model element corresponding to
b_x. In addition, when used, qualifier abstract denotes "without parent".

Table 2: back propagation rules in case of addition of an element in the B System specification

B System Domain Model
Addition Of Input Constraint Output Constraint

1 Abstract set b_CO b_CO ∈ AbstractSet o_CO o_CO ∈ Concept
2 Abstract enumera-

tion
b_CO
(b_I j) j∈1..n

b_CO ∈ EnumeratedSet

∀ j ∈ 1..n, b_I j ∈ SetItem
∧ SetItem_itemOf_EnumeratedSet(b_I j) = b_CO

o_CO
(o_I j) j∈1..n

o_CO ∈ Concept

Concept_isEnumeration(o_CO) = TRUE

∀ j ∈ 1..n, o_I j ∈ Individual
∧ Individual_individualOf_Concept(o_I j) = o_CO

3 Set item b_elt
b_ES

b_elt ∈ SetItem
b_ES = SetItem_itemOf_EnumeratedSet(b_elt)
o_ES ∈ Concept

o_elt o_elt ∈ Individual
Individual_individualOf_Concept(o_elt) = o_ES

4 Constant typed as
subset of the corre-
spondent of a con-
cept

b_CO
b_PCO

b_CO ∈ Constant
b_PCO ∈ AbstractSet ∪ Constant
b_CO ⊆ b_PCO
o_PCO ∈ Concept

o_CO o_CO ∈ Concept
Concept_parent_Concept(o_CO) = o_PCO

5 Constant typed as
item of the corre-
spondent of a con-
cept

b_elt
b_CO

b_elt ∈ Constant
b_CO ∈ AbstractSet ∪ Constant
b_elt ∈ b_CO
o_CO ∈ Concept

o_elt o_elt ∈ Individual
Individual_individualOf_Concept(o_elt) = o_CO

6 Variable typed as
subset of the cor-
respondent of a
concept

b_CO
b_PCO

b_CO ∈ Variable
b_PCO ∈ AbstractSet ∪ Constant ∪ Variable
b_CO ⊆ b_PCO
o_PCO ∈ Concept

o_CO o_CO ∈ Concept
Concept_parent_Concept(o_CO) = o_PCO
Concept_isVariable(CO) = TRUE

7 Variable typed as
item of the cor-
respondent of a
concept

b_elt
b_CO

b_elt ∈ Variable
b_CO ∈ AbstractSet ∪ Constant ∪ Variable
b_elt ∈ b_CO
o_CO ∈ Concept

o_elt o_elt ∈ Individual
Individual_individualOf_Concept(o_elt) = o_CO
Individual_isVariable(o_elt) = TRUE

8 Constant typed as a
relation

b_AS
b_CO1
b_CO2

b_AS ∈ Constant
{b_CO1, b_CO2} ⊂ AbstractSet ∪ Constant
b_AS ∈ b_CO1↔ b_CO2
{o_CO1, o_CO2} ⊂ Concept

o_AS o_AS ∈ Association
Association_domain_Concept(o_AS ) = o_CO1
Association_range_Concept(o_AS ) = o_CO2
As usual, the cardinalities of o_AS are set according to the
type of b_AS (function, injection, ...).
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9 Variable typed as a
relation

b_AS
b_CO1
b_CO2

b_AS ∈ Variable
{b_CO1, b_CO2} ⊂ AbstractSet ∪ Constant ∪ Variable
b_AS ∈ b_CO1↔ b_CO2
{o_CO1, o_CO2} ⊂ Concept

o_AS o_AS ∈ Association
Association_domain_Concept(o_AS ) = o_CO1
Association_range_Concept(o_AS ) = o_CO2
Association_isVariable(o_AS ) = TRUE
As usual, the cardinalities of o_AS are set according to the
type of b_AS (function, injection, ...).

10 Constant typed as a
maplet

b_elt
b_ant
b_im

b_elt ∈ Constant
{b_ant, b_im} ⊂ Constant
b_elt = b_ant 7→ b_im
{o_ant, o_im} ⊂ Individual

o_elt o_elt ∈ Individual
MapletIndividual_antecedent_Individual(o_elt) = o_ant
MapletIndividual_image_Individual(o_elt) = b_im

11 Variable typed as a
maplet

b_elt
b_ant
b_im

b_elt ∈ Variable
{b_ant, b_im} ⊂ Constant ∪ Variable
b_elt = b_ant 7→ b_im
{o_ant, o_im} ⊂ Individual

o_elt o_elt ∈ Individual
MapletIndividual_antecedent_Individual(o_elt) = o_ant
MapletIndividual_image_Individual(o_elt) = b_im
Individual_isVariable(o_elt) = TRUE

12 Variable initialised
to the correspondent
of an individual

b_elt
b_init

b_elt ∈ Variable
b_init ∈ Constant
Initialisation: b_elt := b_init
{o_init, o_elt} ⊆ Individual

Individual_initialValue_Individual(o_elt) = o_init

The addition of a non typing logic formula (logic formula that does not contribute to the definition of the type
of a formal element) in the B System specification is propagated through the definition of the same formula in the
corresponding domain model, since both languages use first-order logic notations. This back propagation is limited to a
syntactic translation.

A fresh B System constant or variable b_x is defined within the domain model, by default, as a defined concept
(instance of DefinedConcept), until a typing B System logical formula is introduced (subset of the correspondence of a
concept, relation, item of the correspondence of a concept or maplet). The concept b_x is defined with correspondence
of B System logical formulas where b_x appears: there must be at least one.
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