
REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

D1.2 - Assessment report on the Formose method
and tools on the case studies
WP1.2 - Case Study and Tool Assessment

Abstract: This deliverable reports on the evaluation of the Formose methods and
tools in the FORMOD tool, from OpenFlexo. We evaluate those tools and methods
on the different use-cases of the project.

Status: Public / Confidential
Version: Draft / Review / Final

Thales Research & Technology Page 1 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Version history

Version Date Contributors Contribution

1.0 14-11-2019 Delphine Longuet Drafting of the document

1.1 10-02-2020 Delphine Longuet Update with new release of tool

1.2 17-02-2020 Romain Soulat Update and corrections

1.3 14-05-2020 Delphine Longuet Corrections

Thales Research & Technology Page 2 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Contents

1 Introduction 5

I Thales Use Case 6

2 Thales Use Case: DVOR 7

3 Overview of the tool 7

4 Document Annotation 7

5 SysML/KAOS Goal Diagram 10

6 Domain Model 12

7 B Model 14

8 Conclusion 14

II Clearsy Use Case 16

9 Clearsy Use Case 17

10 The Main Goal 17

11 Refining Goal and Data Atomicity 19
11.1 Introducing the Input Agents . 19
11.2 Introducing the Output Agents . 23
11.3 Data Refinement . 25

12 Refining The Communication Protocol 27
12.1 Implementation Type . 28
12.2 Communication Type . 28
12.3 Refining Broadcast Centralised Get and Put . 29

13 Case Study Assessment 30

14 Scope 31
14.1 Identification . 31

Thales Research & Technology Page 3 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

List of Figures

1 Excerpt from the DVOR general requirements (FAA document) 8
2 Original Word requirement document . 9
3 The document annotation interface . 9
4 Functional goal diagram of a DVOR . 10
5 Non functional goals and their corresponding functional goals 11
6 Non functional goals influencing choices between functional goals 12
7 Definition of levels into the goal diagram . 12
8 Level 8 of the DVOR domain model . 13
9 Result of the export to B . 14
10 Formalizing Goals . 17
11 Domain Diagram corresponding to the Main Goal 18
12 Domain Diagram of the Main Goal in the Domain View of Formod 19
13 Main Goal of SATURN Network . 19
14 Domain Diagram introducing Local and Remote Input Variables 20
15 AND Refinement of the Main Goal of SATURN Network 21
16 Main Goal’s Refinement in the SysML/KAOS View of Formod 21
17 Domain Diagram introducing Local and Remote Output Variables 24
18 MILESTONE Refinement of the Control Goal . 24
19 Domain Diagram for Data Refinement . 26
20 Data Refinement of Get , Computation and Put Goals 27

Thales Research & Technology Page 4 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

1 Introduction

This document reports on the evaluation of the FORMOSE methods and FORMOD tool on the
Thales and Clearsy use cases. It is divided in two parts: one for the Thales use case and
the other one for the Clearsy use case. Each part describes the different modelling steps of
the use case following the FORMOSE methodology and comments on the usability of the tool
along these steps.

Thales Research & Technology Page 5 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Part I

Thales Use Case

Thales Research & Technology Page 6 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

2 Thales Use Case: DVOR

A DVOR (Doppler Very High Frequency Omnidirectional Range) is a radio navigation device
for aircrafts. “Very high frequency" means that it operates in the band of 108 to 118 MHz. It
transmits an omnidirectional signal enabling a suitably equipped aircraft to determine its posi-
tion with respect to the device. It also transmits a Morse code of the DVOR station identifier
and a voice signal.

A DVOR ground station uses a phased antenna array to send a highly directional signal that
simulates a clockwise horizontal rotation at a rate of 30 times per second. It also sends a ref-
erence signal which is in phase with the directional signal as the latter passes magnetic north.
The phase difference between the reference signal and the directional one corresponds to the
angle of the aircraft relative to the DVOR station and magnetic north. The directional signal is
transmitted by a circular array of omnidirectional antennas concentric about an omnidirectional
antenna transmitting the reference signal.

Figure 1 shows the main high-level functional requirements extracted from the Federal Avi-
ation Administration (FAA) requirement document, which gives the main specifications to which
a DVOR ground station must comply. Thales use-case also had all the requirement levels from
System requirement down to one component software requirements. We chose to only work
on the highest level of requirements, client specification, as it is open to anyone and not subject
to confidentiality issues. We believe that our experiments would have lead to the same results
on the Thales requirements.

3 Overview of the tool

We installed the FORMOD tool on Windows 10, with Java 1.8. This corresponds to the standard
Thales development environment.

When creating a project, one must give it the Formose nature to have access to the different
models of the Formose methodology. The first step consists in defining the requirements,
either by annotating an imported written document or by adding them manually. Then the
SysML/KAOS methodology can be instantiated, in order to organise the requirements as goal
diagrams. In these goal diagrams, different levels (groups of goals) must be defined, which will
correspond to different levels in the domain model. Once these levels are defined, the domain
model methodology can be instantiated. The domain model defines the concepts of the system
as well as the relations between them. This model then serves as a basis to a B model of the
system on which refinement properties can be proven.

4 Document Annotation

For the requirement elicitation phase, we worked with the Detailed Requirements section of the
FAA requirement document (see an excerpt in Fig. 2).

The document annotation module of the tool allows one to import a Word document with the
.docx extension in order to extract the requirements from it. Most documents from certificate
bodies, or clients are PDFs, while internal documents are in .docx. Since we only had a PDF
version of the DVOR specification document from the FAA, we had to reformat it as a Word
document to be able to import it in the FORMOD tool. The result of its importation can be seen

Thales Research & Technology Page 7 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Aircraft Indications. The radiated DVOR signal shall cause a standard aircraft VOR instrument
to display the aircraft’s angular bearing from magnetic North in degrees, referenced to the
location of the DVOR.

Navigation Characteristics. The navigation characteristics of the DVOR are:

• The DVOR shall radiate a radio frequency carrier modulated by two separate 30 Hz
signals which differ in phase. The phase difference between the fixed (reference) and
variable phase modulation is interpreted as the navigational bearing by the VOR re-
ceiver.

• The variable phase signal shall be such that its phase, observed at a point in space, dif-
fers from the reference signal by an angle equal to the bearing of the point of observation
with respect to the DVOR antenna system location.

Variable Phase Technique. The DVOR shall create the variable phase 30 Hz modulation by means
of the double sideband (upper and lower) Doppler technique, i.e., by electronically simulating
moving antennas.

Magnetic North Alignment. The reference and variable phase modulations shall be in phase along
the reference magnetic meridian through the DVOR antenna system.
Note: The reference and variable phase modulations are in phase when the maximum value
of the sum of the radio frequency carrier and the sideband energy due to the reference phase
modulation occurs at the same time as the highest instantaneous frequency of the variable
phase modulation.

Figure 1: Excerpt from the DVOR general requirements (FAA document)

Thales Research & Technology Page 8 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 2: Original Word requirement document

Figure 3: The document annotation interface

in Fig. 3, in the central panel of the window. The structure of the document is displayed in the
bottom left panel.

A requirement document is highly structured and each requirement is numbered (see Fig. 2),
so the numbering of the subsections is an important information to browse through the docu-
ment. As can be seen in Fig. 3, in the current version of the tool, the importation preserves the
text and the structure of the document, but looses the numbering.

Once the document is imported, it can be annotated either to extract fragments of text to be
used later, to identify requirements, or to create “elements” which will give structure to the future
models. The document can also be directly modified inside the tool, which may be useful for
small corrections but seems to be dangerous since major changes (in the structure for example)
are not synchronised with the original document.

We identified the main functional requirements of the DVOR, as can be seen on the right-
hand side panel in Fig. 3.

Each requirement must be given a name and corresponds to one or several sentences of

Thales Research & Technology Page 9 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

the original text. Extracted fragments of text which are not yet identified as requirements will
appear under the directory Unclassified references. Extracted sentences may be moved from
a requirement to another or from unclassified to a requirement. Once these requirements are
extracted, one can instantiate the SysML/KAOS methodology by moving to the SysML/KAOS
view, in order to organise these requirements as goal diagrams.

5 SysML/KAOS Goal Diagram

When the SysML/KAOS view opens for the first time, all the requirements identified during the
document annotation step are displayed in the bottom left panel. The central panel is empty.
There are two ways to create a new functional goal: either by dragging and dropping one of
the requirements from the bottom left panel, or by dragging and dropping an F-goal (functional
goal) template from the right palette. In the latter case, a new requirement will be created and
will appear with the already existing ones in the bottom left panel (see Fig. 4).

Figure 4: Functional goal diagram of a DVOR

One can see that, in our goal diagram of the DVOR, high-level goals at the top of the
diagram were created by hand, while the requirements identified in the document appear as
subgoals, at the bottom of the diagram. This is due to the fact that the requirements are
already rather detailed and sometimes technical in the FAA document. There does not exist a
more general document justifying these technical choices since a DVOR is a well-known device
which answers to established and well-understood aircraft navigation rules.

We also note that goal diagrams aim at providing several alternatives for some refinement
(with the use of the “or” connector). In this use-case, most of the choices have already been
made by the client, probably during an earlier phase. Our goal diagram is mostly composed
of “and” and “milestone” connectors. We believe that this will be the case in a lot of systems

Thales Research & Technology Page 10 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

where the design is highly influenced by previous products and standards. We can see how,
in a more agile environment, choices might exist, maybe even partially implemented before
justifying which one is taken. Overall, thinking in terms of goals makes the engineers work in a
different mind set. Goals should express “what” or “why” the system is being built, and not the
implementation. Engineers tend to make choices at the early levels of design by coming with
solutions.

The goals at the bottom of the diagram may be assigned to agents, being either part of the
environment or part of the system itself. These goals may themselves be refined into subgoals
in other goal diagrams, thus focusing on the corresponding agent. Requirements of the bottom
left panel may be dragged and dropped several times in different diagrams if necessary, for
example if one of the bottom requirement must be the root of another goal diagram refining it.
The different goal diagrams are shown in the top left panel.

Besides functional goals, non functional requirements may also be structured as goal dia-
grams. Non functional requirements are most of the time linked to functional requirements for
the part of the system designed to realise or ensure these non functional requirements. For
example in the case of the DVOR, in order to ensure the quality of the emitted signal (which
is a non functional requirement), a monitoring device is added to the main system, this device
having its own functional requirements to be able to meet its purpose (see Fig. 5).

Figure 5: Non functional goals and their corresponding functional goals

When several ways of meeting a non functional requirement are possible, contribution goals
may be added to explicitly show positive or negative effect of a functional goal to a non func-
tional one. For example in a VOR, the choice of a fixed circular array of antenna (DVOR) instead
of a rotating antenna (CVOR) comes from the non functional requirement called Solid-state de-
sign, stating that the device shall not have any moving parts. The corresponding part of the
diagram may be seen in Fig. 6.

The interface of this view makes the creation of goal diagrams rather easy thanks to drag-
and-drop. Each new requirement created by hand is also created in the Document Annotation
view, which allows to link it to a fragment of text in the document even after the requirement
identification phase. In the other way round, if a new requirement is identified, it is added to the
list of requirements and may be used to create a goal in the diagram.

The functional goal diagram will serve as a basis to the creation of a domain model. To be
able to give structure to the domain model and to the future B model, one must first identify
levels, which are layers of goals. To each level of goals will correspond a part of the domain
model that focuses on these goals, by defining the concepts introduced by these goals as well

Thales Research & Technology Page 11 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 6: Non functional goals influencing choices between functional goals

as the relations between them and with the concepts introduced at higher levels.

Figure 7: Definition of levels into the goal diagram

As we can see in Fig. 7, our goal diagram has 8 levels, that will correspond to as many
levels in the domain model. Unfortunately, the methodology only allows levels to contain goals
located at the same depth of the diagram, which we feel is a too strong restriction in prac-
tice. Furthermore, realistic models might be composed of several goal models, which makes
impossible the definition of levels that would gather goals of different goal models.

6 Domain Model

Once levels are defined in the goal diagram(s) of the SysML/KAOS view, one can instantiate
the Domain Model methodology.

For each level, the concepts introduced at this level of abstraction must be created as con-

Thales Research & Technology Page 12 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

cepts in the domain model, and their relations modelled as associations. The interface allows
one to create objects by drag-and-drop from the right palette (see Fig. 8), even for attributes
and formulas. The red objects are concepts, the yellow ones are associations and the green
ones are individuals.

The bottom left panel displays for each level the objects created at this level, and the objects
defined at higher levels. Levels inherit from one another, so objects introduced at level i may
be used at level j for j > i, by dragging and dropping them from the bottom left panel. This
enables to create relations between objects defined at different levels, as we can see in Fig. 8.

• A concept may be refined into subconcepts: SidebandSignal defined at level 5 inherits
from Signal defined at level 4.

• Individuals of a concept may be created: SidebandSignal_0 defined at level 8 is an in-
stance of SidebandSignal defined at level 7.

• Associations may be created between existing concepts: EmittedSignal defined at level
8 links the concept of Antenna defined at level 7 and the concept of Signal defined at
level 4.

Figure 8: Level 8 of the DVOR domain model

The interface of this view makes it rather easy to create domain models, even if multiple
options are often proposed in the contextual menus, that are not always easy to understand.
Besides, it would be nice to propose some help to the user to write syntactically correct formulas
(that must be written in B already at this step).

Thales Research & Technology Page 13 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

7 B Model

At the very end of the chain of models, the structure of a B model can be generated from the
previous models (see Fig. 9). This view displays at the same time the goal diagram, a level of
the domain model, and its corresponding B context (on the left) and B machine (on the right).
What remains to the user is to write the formulas describing the behaviour of the system at
each refinement step. These formulas, and the rest of the B model must be written by hand.

Figure 9: Result of the export to B

The generated B model can be opened in AtelierB to be completed, so that the refinement
steps can be proven. The model can also be directly modified in the FORMOD tool which
uses AtelierB as backend for syntax checking. This enables the user to keep every model in
the same tool and have a global view of the different models. Furthermore, any modifications
made to the model in FORMOD or in AtelierB is synchronised with the other tool, which makes
the entire process completely integrated.

Once the B model is complete, the proof is done in AtelierB as any B model would be
proven. This step would not be done by the system, or software architect in a company as
Thales.

8 Conclusion

The FORMOD tool in its current state can be used to create models following the FORMOSE
methodology, from a requirement document to a B model that can ultimately be proven. It
provides a nice interface and a rather easy way to draw diagrams by dragging and dropping
objet templates or objects existing from a previous model. We demonstrated its usability on the
realistic use case of the DVOR.

Thales Research & Technology Page 14 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

The main problem we encountered with the tool is the loss of information when loading an
existing project. All the objects of the project still exist graphically but their nature and the data
attached to them seem to be lost, which prevents from making essential modifications to the
project.

From a methodological point of view, the current state of the tool allows one to create the
whole chain of models from the document annotation to the B model, but does not really allow to
step back from a model to a previous one. For instance, once a domain model is instantiated, it
is possible to add new levels in the goal diagram but no other modification is taken into account
(adding or deleting goals, reorganising them, or modifying levels). As another example, once
the B model is created, it is no longer possible to modify the domain model. To be used on
realistic projects, the tool needs to provide more flexibility to changes, or at least inform the
user when a change she wants to make may break the global consistency between models.

In its current state, the FORMOD tool is an acceptable prototype which provides all the
functionalities necessary to follow the FORMOSE methodology. Yet, we think it needs to show
more robustness to be considered in an industrial setting. Moreover, we feel that during the
goal elicitation, and domain models definition, one must be aware of the B model that will
be generated. As it stands, it would be an issue to deliver this product and methodology to
Thales system/software architects. We believe that this drawback could be addressed in further
development.

Thales Research & Technology Page 15 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Part II

Clearsy Use Case

Thales Research & Technology Page 16 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

9 Clearsy Use Case

SATURN is a computer network allowing input acquisition, data processing and control output
developed by Clearsy. SATURN is made up of two main components: a concentrator and
input/output (I/O) agents. These components are connected through a network having a ring
topology structured under a master-slave communication model where the concentrator has the
master role and the input/output agents the slave role. The communication protocol is started by
a synchronization frame sent by the concentrator to the I/O agents; the synchronization frame
contains the state of the outputs to be applied by output agents. When the synchronization
frame is received by an output agent, it sets its output according to the requested values in this
frame. When the synchronization frame is received by an input agent, it sends its input values
to the concentrator. The concentrator uses the inputs received in response of a synchronization
frame to calculate the output to be sent in the next synchronization frame.

In this report we present how Formose methodology has been applied in the abstract re-
quirements of the SATURN computer network taking special attention to goals formalization. A
top-down approach is illustrated starting with the presentation of the main goal of the system
in section 10. Then in section 11 we descend in the refinement to show how the atomicity of
the main goal is refined; in particular we make goal and data refinements through Goal and
Domain Diagrams and we use the Proof Obligations to validate these refinements. After the
refinement of atomicity, in section 12 we present how the Formose refinements are used to
show some alternatives in the communication protocol and then we show another refinement
of the choices made in the SATURN network. Finally, in section 13 we give our conclusions on
this Case Study.

10 The Main Goal

The Main Goal of the SATURN network is to compute outputs according to the state of its
inputs. The relationship between inputs and outputs is modeled by a total function, assigning a
single output to inputs combinations.

We formalise goals in Goal Diagram as shown in figure 10. In this figure, below the name
of the goal, we have the expression guard LEADSTO postcondition. This expression uses the
leads to operator () to denote a state transformation from a state where the guard holds to a
state where the postocodition holds. In this way, guard and postcondition are predicates over
the system to be specified.

Figure 10: Formalizing Goals

In order to define the state of the system, we use the Domain Diagram depicted in figure 11.
The concepts T_IN et T_OUT denote the set of values for inputs and outputs respectively.
These concepts are related through the association FB modeling a boolean function, where
input values are associating to output values. Two particular individuals of T_IN and T_OUT
are denoted by constants i0 and o0 respectively; these constants are related through the FB
function as illustrated by the logical formula of the Domain Diagram.

Thales Research & Technology Page 17 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 11: Domain Diagram corresponding to the Main Goal

The Domain Diagram in figure 11 is captured in the Formod tool through the Domain View.
The figure 12 shows the Domain View with the Domain Diagram of the Main Goal.

The state of the system is modeled by two other individuals of T_IN and T_OUT having
a variable kind: in and out respectively. Having this Domain Diagram defined, we formalize
the Main Goal in figure 13. The Main Goal states that the system must be able to pass from
any state (true guard) to a state where the output out variable gets the value corresponding to
FB(in).

Having defined the Goal and Domain models, the Formod tool generates two Event-B com-
ponents: one for the system context, issued from the Domain Diagram and another one, for
the dynamic behavior issued from the Goal Diagram, containing the template of the Event-B
events. In this case, the template contains only one event named Saturn with skip as its body.
This template is completed with the Saturn goal of figure 13 as follows:

Saturn =
SELECT
0 = 0
THEN
out : (out = FB(in))
END

It must be noted that the post-condition of the Saturn goal is translated into Event-B as a
“Becomes Such That” substitution, indicating that the out variable becomes equal to FB(in).
An alternate way to write the substitution in Event-B is by using a deterministic assignment
as out := FB(in). The AtelierB tool generates and discharges all Proof Obligations involving
mainly typing constraints.

In the next section, the Main Goal true out = FB(in) is refined to consider the distribu-
tivity of input/output agents.

Thales Research & Technology Page 18 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 12: Domain Diagram of the Main Goal in the Domain View of Formod

Figure 13: Main Goal of SATURN Network

11 Refining Goal and Data Atomicity

In this section we introduce the notion of input and output agents. The introduction is made in
three parts. First, we introduce the input agents, stressing the importance of proof obligations
to validate the refinements. Then we introduce the output agents to complete the picture of
data transfer in the SATURN network. The final part shows a data refinement technique to
discretise the I/O agents.

11.1 Introducing the Input Agents

In this section the Domain Diagram is modified to introduce two variables which are individuals
of the T_IN concept. The Domain Diagram of the first refinement level is presented in figure
14.

The idea behind this raffinement is to distinguish the memory in input agents and the mem-
ory in the concentrator. Data acquired by captors in the input agents are stored in the remote
variable in_r . This data is transmitted in a certain way to the concentrator and then stored in

Thales Research & Technology Page 19 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 14: Domain Diagram introducing Local and Remote Input Variables

the local variable in_l .
It must be noted that abstract variable in in the Domain Diagram corresponding to the Main

Gaol does not appear in the Domain Diagram of figure 14. In fact, we are refining the abstract
variable in by a concrete variable. In this case we have two new variables in the refinement:
in_l and in_r and we need to add a new Logical Formula in the the Domain Diagram of the
figure 14 to relate the abstract variable in with a concrete variable. The Logical Formumla must
have the form:

in = x

where we must decide to replace x by in_l or in_r . This choice will be treated in the next
paragraphs, but we need to present the Goal Diagram of this refinement first.

For the sake of completeness, we make two attempts to present the Goal Diagram of the
First Refinement Level. The first attempt uses an AND refinement of the main goal. In this first
attempt, we present the two ways of gluing the abstract variable in to the concrete variables,
but we show how this AND refinement fails to be proved. In the second attempt, we show a
MILESTONE refinement of the main goal which is correctly proved.

11.1.1 AND-Refinement of the Main Goal

The figure 15 shows the Goal Diagram of an AND refinement of the Main Goal. Two new sub-
goals are introduced Get and Control . The Get goal denotes the transfer of data from the Input
Agent to the Concentrator whereas the Control goal denotes the output computation by the
Concentrator.

In the Formod Tool, Goal Diagrams are made in the SysML/KAOS View. In that View, Goals
are depicted and then they can be related through the different kinds of refinement. In figure 16
we show an screeshot of the SysML/KAOS View containing the AND Refinement of the Main
Goal of the SATURN Network.

According to the AND Refinement, these two sub-goals must be executed at the same time.
Semantically, the variables are update in parallel as described by the following generalized
substitution :

in_l ,out := in_r ,FB(in_l) (1)

Thales Research & Technology Page 20 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 15: AND Refinement of the Main Goal of SATURN Network

Figure 16: Main Goal’s Refinement in the SysML/KAOS View of Formod

Thales Research & Technology Page 21 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

In this kind of substitution, the expressions on the left hand side of the assignment are first
evaluated and then, the assignments are done at the same time.

As we indicated in previous paragraphs, we need to specify a Logical Formula relating the
abstract variable in with a variable of the Domain Model in figure 14. As the postcondition of
the Control goal states out = FB(in_l) and we need to prove that the postcondition of the
Saturn goal holds, it seems natural to have the following Logical Formula:

in = in_l

In this way we can deduce the postcondition of Saturn goal: out = FB(in).
The Logical Formula in the Domain Diagram is translated as a gluing invariant in the gener-

ated Event-B Model. Moreover, the modified generated template contains the following events:

Get ref_and Saturn =
SELECT
0 = 0
THEN
in_l : (in_l = in_r)
END

Control ref_and Saturn =
SELECT
0 = 0
THEN
out : (out = FB(in_l))
END

The Proof Obligations for this refinement, among others, ask for the proof of the gluing invariant
preservation; as it is defined by the Logical Formula in = in_l , the PO to be proved is:

out ′ = FB(in_l) ∧
in_l ′ = in_r
⇒
in_l ′ = in

In this Proof Obligation out ′ denotes the value of the out variable after execution of event
Control . In the same way, in_l ′ denotes the value of in_l variable after execution of Get event.
Using the gluing invariant in = in_l , which holds before the execution of goal, we can transform
the current goal as follows:

in_l ′ = in_l

This derived goal holds if after execution of Get event, the value of the in_l variable does not
change, that is, the new value of in_l is equal to its previous value. We have no way to prove
such that statement, and therefore we cannot claim that the Mail Goal is correctly refined.

An informal way to realize the unfeasibility of the proof is to see that the abstract variable in
is not modified by the Main Goal, whereas the in_l variable of the AND refinement, related to
in in the gluing invariant, is modified. This observation can be used to fix the Logical Formula
by relating the abstract variable in with the concrete variable in_r which is not modified in this
refinement. Therefore we tray to prove the refinement with the following Logical Formula:

in = in_r

Using this formula as gluing invariant, the AtelierB is not able to discharge all the Proof
Obligations again. This time the unproved PO concerns the preservation of the implicit gluing
invariant:

out_abstract = out_concrete

Thales Research & Technology Page 22 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

where out_abstract denotes the out variable used in the Saturn goal and out_concrete the out
variable in the Control goal. The generated PO is the following:

out ′ = FB(in_l) ∧
in_l ′ = in_r
⇒
FB(in) = out ′

In the left hand side of the equality in the consequent of this PO we can distinguish the value
assigned to out_abstract as stated in the Saturn goal. In the right hand side of the equality
we have the value of out_concrete after execution of the Control goal. From the antecedents
we also observe that the value of out ′ is equal to FB(in_l) as specified by the Control goal.
Therefore, the equivalent goal to prove is

FB(in) = FB(in_l)

The only way to prove this goal is to deduce in = in_l after execution of the Control goal.
However there is no way to prove this equality; in_l is updated with the value of in_r as
specified by the Get goal, but this update is made after evaluation of the right hand side of
the assignment described in 1. When the right hand side is evaluated, the value of the in_l
variable used to compute the output is not yet equal to in_r . This last observation leads us
to conclude that we cannot specify the behavior of the abstract system by imposing a parallel
execution of the goals postconditions, but we need a sequential execution of the postconditions
as required in a MILESTONE refinement.

11.1.2 MILESTONE-Refinement of the Main Goal

The Goal Diagram of the MILESTONE refinement of Saturn goal is similar to the Goal Diagram
of figure 15; the difference between these two diagrams is the type of node joining the refined
goals with the abstract one and the convention of the execution order of the refined goals. In
fact, to denote a MILESTONE refinement, the node is tagged by the “MLS” acronym and the
execution order of the refined goals is read from left to right. Therefore, in this refinement the
Get goal is executed first and then the goal Control is executed. This diagram specifies that
the local variable in_l must be updated with the value of the remote variable in_r and then the
local variable can be used to compute the output variable through the boolean function.

The body of goals Get and Control does not change with respect to the bodies in the
AND refinement, showed in the paragraphs above. The only change is the reserved word
ref_and which is changed by ref_milestone. This time, the AtelierB has no problem in
the automatic proof of the generated Proof Obligations.

In order to complete this first refinement level, we introduce the notion of output agents in
the next paragraph.

11.2 Introducing the Output Agents

Output Agents notion is introduced by adding two new variables in the Domain Diagram pre-
sented in figure 17, as we have done in the introduction of Input Agents. The out_l variable is
the local variable used by the Concentrator to compute the output of the system and the out_r
variable is used by the Output Agents to command their output devices. In the Domain diagram

Thales Research & Technology Page 23 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

we specify by a Logical Formula that the abstract output variable out is glued with the concrete
variable out_l .

Figure 17: Domain Diagram introducing Local and Remote Output Variables

This refinement is completed by the Goal Diagram of figure 18. In this diagram the Control
goal is MILESTONE refined by two subgoals: Computation and Put. Computation goal is
executed after execution of Get goal to compute the outputs from the state of the in_l and
Put goal is executed after computation of Computation goal to specify that the value of the
computed local output variable out_l must be transfered to the Outputs Agents to update their
local variables out_r .

Figure 18: MILESTONE Refinement of the Control Goal

From the Domain and Goal Diagrams presented above, the Formod tool is able to generate
a Event-B template. The two events of the template corresponding to the Goal Diagram are

Thales Research & Technology Page 24 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

modified as follows to formalize the two subgoals:

Computation ref_milestone =
SELECT
0 = 0
THEN
out_l : (out_l = FB(in_l))
END

Put ref_milestones =
SELECT
0 = 0
THEN
out_r : (out_r = out_l)
END

As in the previous refinement, the AtelierB has no problem with the automatic proof of the
Proof Obligations and we are able to finish this refinement level by refining the atomicity of the
variables as explained in the following paragraphs.

11.3 Data Refinement

The idea behind this refinement is to individualize input and outputs agents and their associated
data variables. This individualization is formalized through the excerpt of the Domain Diagram
depicted in the figure 19. In order to distinguish the agents we introduce the concepts MI
and MO to denote the set of all input and output agents respectively. A given configuration of
SATURN has a fixed number of input and outputs agents. Therefore, we define the concepts
agents_in and agents_out , which are derived from MI and MO , to denote the set of input and
output agents in a given SATURN configuration. In this refinement we suppose that input and
output data manipulated by these agents is of type BOOL. Thus, we defined the concept VIN
as the set of total functions between agent_in and BOOL; this definition is specified by the
logical formula

VIN = agents_in → BOOL (2)

In a similar way the VOUT concept is defined by

VOUT = agents_out → BOOL (3)

In this way, VIN and VOUT are seen as concrete data types used to type the variables of
the agents. The association VFB models the computation function taking input data of type
VIN and producing output data of type VOUT . Moreover the VIN concept is used to define the
input variables s_in_r and s_in_l and the initialization value s_i0 . The s_in_l variable denotes
the input variable of all input agents as seen by the concentrator, whereas s_in_r denotes the
remotes variables updated by the input agents from data coming from their input devices. In a
similar way, the VOUT concept is used to define the individuals s_out_l and s_out_r . s_out_l
denotes the output variable as seen by the concentrator containing the data computed through
the VBF function with the local input data s_in_l whereas s_out_r represents the remote
variables of the output agents used to command output devices.

The attributes vec_to_in and vec_to_out of concepts VIN and VOUT in the Domain Di-
agram are used in the correctness proof of this data refinement. vec_to_in is a total in-
jection between the concrete data type VIN and the abstract one T_IN (VIN � T_IN).
vec_to_out is a total function between the concrete data type VOUT and the abstract one
T_OUT (VOUT � T_OUT). The injective characteristic of these functions is specified in the
Domain Diagram by a cardinality of 0..1 in the domain side of the function and a cardinality of

Thales Research & Technology Page 25 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 19: Domain Diagram for Data Refinement

1 in the range side. These functions allow us to complete the definition of VFB association
and define gluing relations between abstract and concrete variables as defined by the following
logical formulas:

VFB = (vec_to_in ; FB ; vec_to_out−1) (4)
in_l = vec_to_in(s_in_l) (5)
in_r = vec_to_in(s_in_r) (6)
out_l = vec_to_out(s_out_l) (7)
out_r = vec_to_out(s_out_r) (8)

To complete this refinement level, we show the Goal Diagram of the data refinement in the
figure 20. The diagram illustrates the refinement of the current three sub-goals: Get , Com-
putation and Put . The corresponding refined goals have been renamed with the postfix _S to
denote the synchronous update of the memory of all input and outputs agents.

Events generated from the Domain and Goal diagrams are completed as follows:

S_Get ref
Get =
SELECT
0 = 0
THEN
s_in_l
: (s_in_l = s_in_r)

END

S_Computation ref
Computation =
SELECT
0 = 0
THEN
s_out_l
: (s_out_l = VFB(s_in_l))

END

S_Put ref
Put =
SELECT
0 = 0
THEN
s_out_r
: (s_out_r = s_out_l))

END

The Proof Obligations generated by the AtelierB tool were mainly discharged by the auto-
matic prover. However the preservation of the gluing relation 7 by the Computation_S goal had

Thales Research & Technology Page 26 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

Figure 20: Data Refinement of Get , Computation and Put Goals

to be manually proved. The generated Proof Obligation is the following:

s_out_l ′ = VBF (s_in_l)
⇒
FB(in_l) = vec_to_out(s_out_l ′)

The consequent of this proof corresponds to the gluing relation 7 where out_l is replaced by
FB(in_l) according to the postcondition of the abstract goal Computation whereas s_out_l is
replaced by VBF (s_in_l) according to the postcondition of the concrete goal Computation_S.
By using forward functional composition, this consequent can be set in an equivalent form as
follows:

FB(in_l) = (VBF ; vec_to_out)(s_in_l)

Using the Logical Formula 4 and taking into account that

vec_to_out−1 ; vec_to_out = id(T_OUT)

the predicate to prove becomes:

FB(in_l) = (vec_to_in ; FB ; id(T_OUT))(s_in_l)

This last predicate can be rewritten as follows considering the fact that r ; id(ran(r)) = r for
any relation r:

FB(in_l) = FB(vec_to_in(s_in_l))

Finally, using the gluing relation 5, we prove this last statement.

12 Refining The Communication Protocol

In this section we explore some alternatives to specify the communication protocol between in-
put/output agents and the concentrator. First, we begin the alternatives with the choice between
a centralized or distributed communication implementation. Then, for each kind of implemen-
tation, we specify that communication can be done by a point to point communication or by a
broadcast.

Thales Research & Technology Page 27 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

The kind of implementation and the type of communication between agents an concentrator
is specified by two new variables used in the conditions of the guards to be specified. However,
the postconditions are not modified with respect to their specifications in the refined goals of
the Goals Diagram in figure 20. For the sake of conciseness, we do not illustrate the Domain
and Goal Diagrams of these refinement and they are informally presented.

This section terminates with the specification of choices of coordination and communication
type made in the SATURN network.

12.1 Implementation Type

Communication implementation between agents and concentrator is specified through the Implementation
variable having the enumerate type {Centralized ,Distributed}. When the implementation is
centralized, the concentrator requests for input to input agents and sends data to output agents,
while in a distributed implementation, input agents take the initiative to send input data to the
concentrator and output agents request output data to the concentrator.

The two possible implementations of the S_Get subgoal is specified by the follwoing OR
refinement:

Distributed_Get ref_or S_Get =̂
Implementation = Distributed s_in_l = s_in_r (9)

Centralized_Get ref_or S_Get =̂
Implementation = Centralized s_in_l = s_in_r (10)

whereas the two possible implementions the S_Put goal is given by the following OR refine-
ment:

Distributed_Put ref_or S_Put =̂
Implementation = Distributed s_out_r = s_out_l (11)

Centralized_Put ref_or S_Put =̂
Implementation = Centralized s_out_r = s_out_l (12)

The Proof Obligations of an OR refinement allow us to ensure that any refined goal refines,
in an Event-B way, the abstract goal and that the guards of the refined goals are exclusive. In
this case, the AtelierB tool has no probem with these Proof Obligations as the postconditions of
the refined goals are the same that the abstract postcondition and moreover, the refined guards
are strengthened.

12.2 Communication Type

Communication type is specified through the Communication variable of type {Broadcast,PointToPoint}.
In a communication of type broadcast (BRC) the concentrator has data channels shared among
the input and output agents while in a communication of type point to point (P2P), the number
of data channels is proportional to the number of agents.

Thus, each goal g in 9..12 is OR refined by two goals g1 and g2 where the postconditions
of g1 and g2 are the same that the postcondition of g, the guard of g1 is the conjunction of the
guard of g and condition Communication = Broadcast and the guard of g2 is the conjunction
of the guard of g and condition Communication = PoitToPoint . Moreover, the name of the

Thales Research & Technology Page 28 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

subgoal g1 is made up from the prefix BRC and the name of g and the name of subgoal g2 is
made up from the prefix P2P and the name of g. The AtelierB tool has automatically proved
the Proof Obligations associated a these OR refinements.

The designers of the SATURN network have decided to use a broadcast communication
with a centralized coordination between agents and the concentrator. Thus, the following sub-
goals were implemented:

BRC_Centralised_Get ref_or Centralised_Get =̂
Implementation = Centralised ∧ Communication = Broadcast

 s_in_l = s_in_r (13)
BRC_Centralised_Put ref_or Centralised_Put =̂

Implementation = Centralised ∧ Communication = Broadcast

 s_out_r = s_out_l (14)

In subgoals 13 and 14, it is supposed that the memory of input/output agents can be accessed
directly by the concentrator, however, these memory areas are disjoint and the concentrator
cannot access them directly. Therefore we need to model the communication network to specify
the transfer of information between the concentrator and the input/output agents.

12.3 Refining Broadcast Centralised Get and Put

In the Broadcast Centralized Get, the concentrator requests for data to input agents and they
send their remote data to the concentrator. This full duplex communication is modeled by
two channels: one for request input data (req_input_ch) and another one to transfer the data
(input_ch). The Domain Diagram associated to this refinement provides the following typing
information, indicating that the request input channel is a subset of input agents and the input
channel is an association between input agents and a boolean, denoting the value of its local
memory:

req_input_ch ∈ P(MI)

input_ch ∈ agents_in →p BOOL

The variables used to model these channels are initially set to the empty set.
The BRC_Centralised_Get can now be MILESTONE refined using these new variables as

follows:

Input_Request ref_milestone BRC_Centralised_Get =̂
Implementation = Centralised ∧ Communication = Broadcast

 req_input_ch = agents_in (15)
Transfer_Input_Values ref_milestone BRC_Centralised_Get =̂

req_input_ch = agents_in input_ch = s_in_r (16)
Receive_Input_Values ref_milestone BRC_Centralised_Get =̂

dom(input_ch) = agents_in s_in_l = input_ch (17)

This refinement states that three steps are need to fulfill the MILESTONE refinement. The first
step, specified by subgoal 15, specifies the request for input data made by the concentrator.

Thales Research & Technology Page 29 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

The post-condition of this subgoal indicates that the request input channel must be updated
with the input agents that receive the input request. The second step, specified by subgoal 16,
states in its post-condition that the input channel must be updated by the input agents with their
remote memory when the request input channel has been update with agents_in, as indicated
by the guard of this goal. Finally, the third step, specified by subgoal 17, indicates that the
concentrator must update its local memory with data coming from the input channel when all
input agents have put their data into the input channel.

In the Broadcast Centralized Put, the concentrator sends the computed data to output
agents through an output channel output_ch having the following type in the Domain Diagram:

outptu_ch ∈ agents_out →p BOOL

This variable is also initialized to the empty set. When output agents receive their respective
values from the output channel, they update their memory. This behavior is specified by the
MILESTONE refinement of the the BRC_Centralised_Put goal:

Transfer_Output_Values ref_milestone BRC_Centralised_Put =̂
Implementation = Centralised ∧ Communication = Broadcast

 output_ch = s_out_l (18)
Receive_Output_Values ref_milestone BRC_Centralised_Put =̂

dom(output_ch) = agents_out s_out_r = output_ch (19)

Goal 18 specifies the sending of calculated data by the concentrator through the communication
channel whereas goal 19 specifies the remote memory update made by the output agents with
data coming from the output channel.

It is to be remarked that the AtelierB tool generates Proof Obligations to prove the proper
execution of non-miraculous goals in a MILESTONE refinement. That is, for any goal gi in a
MILESTONE goal sequence g1, . . . , gn, where i 6= 1, there is a Proof Obligation to guarantee
that the guard of gi is established by sequential execution of goals g1, . . . gi−1. In this way, for
example, it is proved that the guard of goal 17 (dom(input_ch) = agents_in) is established by
execution of goals 15 and 16. In this case, the update of input_ch with s_in_r , specified in the
post-condition of 16 (input_ch = s_in_r), ensures the guard of 17 by realizing that s_in_r is a
total function with domain agents_in. The AtelierB has been able to discharge automatically all
the Proof Obligations in this refinement.

13 Case Study Assessment

In this Case Study we apply the Formose methodology, through the Formod and Atelier B tools,
over a system already designed and built. In fact, we only explored the abstract functionality
of the SATURN network without implementation details. However, this Case Study allowed us
to better understand the goals formalization and the Proof Obligations associated with goal
refinements.

The Domain and Goal diagrams used in sections 10 and 11 have been proved useful notions
to specify, in a pictorial way, the system state and its abstract behavior. The Domain diagram
provides the same information that PROPERTIES and INVARIANT clauses in a classical Event-
B approach. However, this graphical view shows immediately the relationship among these
elements and seems to be more suitable to non expert users. The Goal diagram becomes

Thales Research & Technology Page 30 / 31

REPORT / TECHNICAL DOCUMENT

D1.2 - Assessment report on the Formose method and tools

a declarative specification of the system behavior at any abstraction level. The intended role
of these diagrams is similar to the role of events in a Event-B formalization. Nevertheless,
the computation model of an Event-B system, that is, iteration over events chosen in a non
deterministic way, adds complexity in the ordering of actions to be done by the system, which
is avoided by the refinement of Goals proposed by the Formose methodology. Moreover, new
events in Event-B are difficult to be introduced and need to declare variant expressions to prove
bounded stuttering steps; the Formose approach also avoids this complexity by introducing new
goals in a natural way through its three kind of refinements.

Refinements of goals have been rigorously proved thanks to the Proof Obligations defined
for the three kinds of goal refinements. This fact was illustrated in section 11 where the Sat-
urn goal was first defined as an AND refinement of subgoals Get and Control, then after the
impossibility of discharge the Proof Obligations of this kind of refinement, we defined it as a
MILESTONE refinement. Moreover, in the paragraph “Refining Broadcast Centralised Get and
Put” in section 12.3, it was shown how the Proof Obligations guarantee the correct sequencing
of goals in a MILESTONE refinement.

From our experience in the application of the methods and tools of the Formose methodol-
ogy, we have two comments to make. The first one concerns the methodological point of view
of Goal Refinements, where the refinement constructs of the Formose methodology have been
proved useful at the abstract level where they were applied in this Case Study. Nevertheless, a
new construct to express iteration of goals seems to be necessary if algorithmic details are to
be specified. The second comment concerns the Atelier B integration in the Formod tool. As
indicated in section 3.3.2 "Proof Activity and Feedback to Formod" of deliverable D3.2.b/D3.2.c,
the integration of the Atelier B in the Formod tool needs to be improved, in order to get a trace-
ability between the Proof Obligations of the Atelier B and the refinements in the Goal Diagrams.

However, the current state of methods and tools proposed by the Formose methodology
are showed to be useful in the field of Requirements Engineering by providing a formal relation,
made up of Goal and Domain Diagrams, between requirements in natural language and their
respective formalization in the Event B notation.

14 Scope

14.1 Identification

Document Name: Assessment report on the Formose method

and tools on the use case studies

Deliverable Identification Number: D1.2

Project Name: ANR Formose

File Name: Formose-D1.2

Thales Research & Technology Page 31 / 31

	Introduction
	I Thales Use Case
	Thales Use Case: DVOR
	Overview of the tool
	Document Annotation
	SysML/KAOS Goal Diagram
	Domain Model
	B Model
	Conclusion

	II Clearsy Use Case
	Clearsy Use Case
	The Main Goal
	Refining Goal and Data Atomicity
	Introducing the Input Agents
	Introducing the Output Agents
	Data Refinement

	Refining The Communication Protocol
	Implementation Type
	Communication Type
	Refining Broadcast Centralised Get and Put

	Case Study Assessment
	Scope
	Identification

